Waddelma

  • Vanderbilt University

    Central Involvement in Pure Autonomic Failure: Insights from Neuromelanin-Sensitive Magnetic Resonance Imaging and 18F-Fluorodopa-Positron Emission Tomography

    Trujillo, Paula; O’Rourke, Kaitlyn R.; Roman, Olivia C.; Song, Alexander K.; Hett, Kilian; Cooper, Amy; Black, Bonnie K.; Donahue, Manus J.; Shibao, Cyndya A.; Biaggioni, Italo; Claassen, Daniel O. “Central Involvement in Pure Autonomic Failure: Insights from Neuromelanin-Sensitive Magnetic Resonance Imaging and 18F-Fluorodopa-Positron Emission Tomography.” Movement… Read More

    Jan. 28, 2025

  • Vanderbilt University

    Reflecting on a Year of Growth and Opportunity

    Landman, Bennett. “Reflecting on a Year of Growth and Opportunity.” Journal of Medical Imaging, vol. 11, no. 6, 2024, 60101, https://doi.org/10.1117/1.JMI.11.6.060101.  The editorial reflects on the past year, highlighting impactful research and discussing challenges as the 11th volume of the… Read More

    Jan. 28, 2025

  • Vanderbilt University

    Diffusion Chalk Talk (Pt 2)

    Join us this  Thursday, January 23rd, from 10-11 AM in FGH 308, where Nancy Newlin will be continuing the conversation from Dr. Landman’s recent diffusion talk.  This will be an informal discussion on tractography/connectomics. Read More

    Jan. 20, 2025

  • Vanderbilt University

    BrainHack 2025

    VALIANT is proud to partner with BrainHack 2025, a Vanderbilt-led global initiative fostering collaboration and innovation in open and reproducible neuroscience! Join us January 24-26, 2025, at Alumni Hall (in person or online) to connect with researchers, clinicians, developers, and students from across disciplines. If you are in person, sign-up… Read More

    Jan. 16, 2025

  • Vanderbilt University

    CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection

    Liu, J., Zhang, Y., Chen, J.-N., Xiao, J., Lu, Y., Landman, B. A., Yuan, Y., Yuille, A., Tang, Y., & Zhou, Z. (2023). CLIP-driven universal model for organ segmentation and tumor detection. In Proceedings of the IEEE International Conference on Computer Vision (pp. 21095–21107). Read More

    Dec. 16, 2024

  • Vanderbilt University

    Telemedicine Impact on the Patient-Provider Relationship in Primary Care During the COVID-19 Pandemic

    Andreadis, K., Muellers, K., Ancker, J. S., Horowitz, C., Kaushal, R., & Lin, J. J. (2023). Telemedicine impact on the patient-provider relationship in primary care during the COVID-19 pandemic. Medical Care, 61(4), S83–S88. doi: 10.1097/MLR.0000000000001808  The COVID-19 pandemic made telemedicine, or… Read More

    Dec. 16, 2024

  • Vanderbilt University

    Metrics reloaded: recommendations for image analysis validation

    Maier-Hein, L., Reinke, A., Godau, P., et al. (2024). Metrics reloaded: recommendations for image analysis validation. Nature Methods, 21(2), 195-212. doi: 10.1038/s41592-023-02151-z    There is growing evidence that problems with validating machine learning (ML) algorithms are a global issue that’s often overlooked. Read More

    Dec. 16, 2024

  • Vanderbilt University

    Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review

    Cui, C., Yang, H., Wang, Y., Zhao, S., Asad, Z., Coburn, L. A., Wilson, K. T., Landman, B. A., & Huo, Y. (2023). Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review. Progress in Biomedical Engineering, 5(2), 22001. Read More

    Dec. 16, 2024

  • Vanderbilt University

    Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP)

    Jain, S., Pei, L., Spraggins, J. M., Angelo, M., Carson, J. P., Gehlenborg, N., Ginty, F., Gonçalves, J. P., Hagood, J. S., Hickey, J. W., Kelleher, N. L., Laurent, L. C., Lin, S., Lin, Y., Liu, H., Naba, A., Nakayasu, E. S., Qian, W.-J., Radtke, A., Robson, P., Stockwell,… Read More

    Dec. 16, 2024

  • Vanderbilt University

    WASSERSTEIN EMBEDDING FOR GRAPH LEARNING

    Kolouri, S., Naderializadeh, N., Rohde, G. K., & Hoffmann, H. (2021). WASSERSTEIN EMBEDDING FOR GRAPH LEARNING. ICLR 2021 – 9th International Conference on Learning Representations, 34. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150286096&partnerID=40&md5=8b88e110167be2c5fd01da171324d3d6  We introduce a new method called Wasserstein Embedding for Graph Learning (WEGL), which is a… Read More

    Dec. 16, 2024