
● High energy profile confinement to apex achieved within 1.0<λ1/λn<1.2
○  Engineering of λ1/λn can be used to induce high focusing at apex

● Adiabatic compression within RB1 and RB2 both settled at ~30°, 
however at unique rates due to  λp,RB2 >  λp,RB1 at the HPhP launch site
● Intrinsic biaxial property of MoO3 dielectric permittivity tensor

● Realization of ‘forbidden direction’ 
propagation in obtuse sub-wavelength wedges 
○ Similar effect seen in nano-ribbons of 

similar dimensions and conditions within 
RB2 (He et al., 2023)

○ Wavenumber and width along [100] 
combination consistent with 
nano-ribbon work (He et al., 2023)

● Symmetry of ‘forbidden propagation’ 
witnessed in [001] direction 
○ Multi-directional focusing applications 
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Future Work
● Experimental testing of all three propagation 

mode conditions

● s-SNOM: the scattering of light off of a fine tip 
allows for near-field light-matter interactions to 
be probed and mapped over a defined area

● More precise angle-dependence sweeps and 
relations (angle-by-angle changes)

● Other geometric parameters of study (thickness 
dependence, orientational skew, etc.)

Background & Motivation

● Hyperbolic materials - 
dielectric permittivities 
that are opposite in sign 
along different 
directions

● Such materials support 
HPhPs (HPhPs) w/ 
frequency-dependent 
propagation directions

● α-MoO3 exhibits 
hyperbolicity both in- 
and out-of-plane

● Infrared (IR) radiation is crucial for studying 
long-wave thermal energy

● IR light detects thermal fingerprints of 
molecules using unique lattice vibrations

● Spatial resolution of IR optics is limited due to 
their long free-space wavelengths

[2]
● Sub-diffractional confinement of IR 

light opens the door to novel sensing, 
communication, & imaging devices

● Quasi-particles known as 
phonon polaritons (PhPs) 
have been shown to 
compress light to such 
dimensions

● PhPs are quasi-particles of 
coherent oscillating charges 
coupled with photons (light)

Figure 1: 
Formation of 

various 
polariton types

[3]

Figure 2: a) Dielectric function of MoO3 with three Restrahlen bands 
(RB1, RB2, and RB3) b) Orthorhombic crystal structure of MoO3 drives  

optical anisotropy

● Propagation behavior and wavelengths of HPhPs (λp) 
can be tuned and confined using sub-wavelength 
structures of α-MoO3 crystals

● Light scattering from α-MoO3 structures stimulates  
HPhP standing waves that result in a strong resonance

● Sub-wavelength wedge structures offer distinct 
opportunities in confining and focusing HPhPs due to 
physical tapering 

[4]

Figure 3: Propagation and edge 
interactions of HPhPs in MoO3 

slab

[3]

20µm

[1]

Experiment Overview

Ga+ Ion Beam SEM

Figure 4: Procedure for the fabrication and polaritonic testing of MoO3 wedge structures 

[6]
[5]

[3]

● In sub-wavelength wedges, polaritonic modes are 
expected to undergo topological transitions 

● Changing wedge vertex angles (θv) can be used to 
induce transitions in polaritonic modes and 
propagation characteristics

● COMSOL simulations used to optimize geometry 
and define propagation phenomena before 
fabrication and experimental study

Expected Propagation 
Direction

θv

             Mechanical Exfoliation              Focused Ion Beam Etching                  s-SNOM Analysis

1.

Sub-Wavelength MoO3 Wedges

Adiabatic Compression Transition

Figure 6: (a-c) Acute 
wedge geometries with 
[001] propagation at 

frequency of 
700.48cm-1 (d-f) 

Near-field profiles 
along [001] from base 

to apex on wedge 
surfaces  

Figure 8: Comparison of adiabatic compression 
transition for RB1 and RB2 propagation in acute wedges 
(10°- 50°) via compression factor (λ1/λn) analysis with full 

transition at λ1/λn=1 

[001]

[100]

[001]

[100]

[001]

[100]

Reverse Propagation Transition

Figure 9: (a-c) 
Obtuse wedge 

geometries with 
[100] and [001] 

propagation at a 
frequency of 

900.61cm-1 (d-f) 
Near-field 

surface profiles 
along [100] from 
base to apex on 
wedge and [001] 

‘forbidden 
direction’

a) b) c)

d) e) f)

Figure 7: (a-c) Acute 
wedge geometries with 
[100] propagation at a 

frequency of 
900.61cm-1 (d-f) 

Near-field profiles 
along [100] from base 

to apex on wedge 
surfaces 

RB1 Propagation

RB2 Propagation

Transition to Highly Focused Behavior

‘Forbidden Direction’

λ1 λn

λ1>λn

a. Adiabatic Compression b. Highly Focused b. Reverse Propagation

a. b. c. 
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● Formation of three wedge propagation states form at various θv ranges 
○ Adiabatic compression is increasingly dominated by standing wave resonance up to 

~30° and reverse propagation behavior increases in the 120° < θv < 150° 

Figure 11: Optical image of sub-wavelength 
wedge samples fabricated through 

mechanical exfoliation and FIB etching 

● Image Polariton Effect: perfect electric conductor with 
a polaritonic material creates a mirror-polariton that 
couples with the original (Menabde et al., 2022)

[7]
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Figure 10: Modified figure (He et al., 2023) a) 
frequency and nano-ribbon width combinations for 

reverse propagation (green), normal propagation 
(red), and no propagation (gray) b) Visualization of 

reversed vs. normal propagation

Figure 5: Three distinct 
propagation modes within 10°

< θv < 150°

a) Acute θv → Adiabatically 
compressed waves (edges bend 

resonances inward)

b) Intermediate θv → Highly 
focused standing waves

 c) Obtuse θv → Reversed 
propagation waves
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