

INTRODUCTION

OBJECTIVES

APPROACH

cells.

CR2032 Construction and Characterization

Counter electrode: Li metal

<u>Electrolyte:</u> 1.0 M LiPF₆ in 1/1/1 EC/DEC/DMC (ethylene carbonate/ carbonate additive

Voltage Range: 0.015-1.5V Constant Current: 0.1C

Influence of Binder Properties on Performance of Si-Based **Anodes for Li-Ion Batteries**

Megan Burcham, Ethan Self, and Peter N. Pintauro Department of Chemical and Biomolecular Engineering, Vanderbilt University

lapted from [1]	POLYMER FILM	SWELLING IN SOLVENT (wt%)
	PAA	∞
	СМС	∞
	PVBAA	∞
	PAA/CMC-1/1	19
RO	PAA/CMC-3/1	32
	PAA/PVBAA-1/1	292
$\mathbf{RO} \mathbf{OR}^{\mathbf{I}_{n}}$	PAA/PVBAA-4/1	376

POLYMER-ELECTROLYTE SWELLING				
POLYMER FILM	SWELLING (wt%)	INITIAL CAPACITY (mAh/g total)	CAPACITY RETENTION AFTER 9 CYCLES (%)	
PAA	2	1,807	101	
СМС	2	1,388	80	
PVBAA	15	6	46	
PVDF	19	225	1	

Swelling was determined after soaking polymer films (without Si or C) at room temperature in propylene carbonate for 3 hours. • PAA and CMC systems exhibited low swelling. • PVBAA and PVDF showed moderate swelling (>15%)

Binders which swelled less in propylene carbonate showed superior battery performance • Higher initial capacity • Better capacity retention

FUTURE WORK

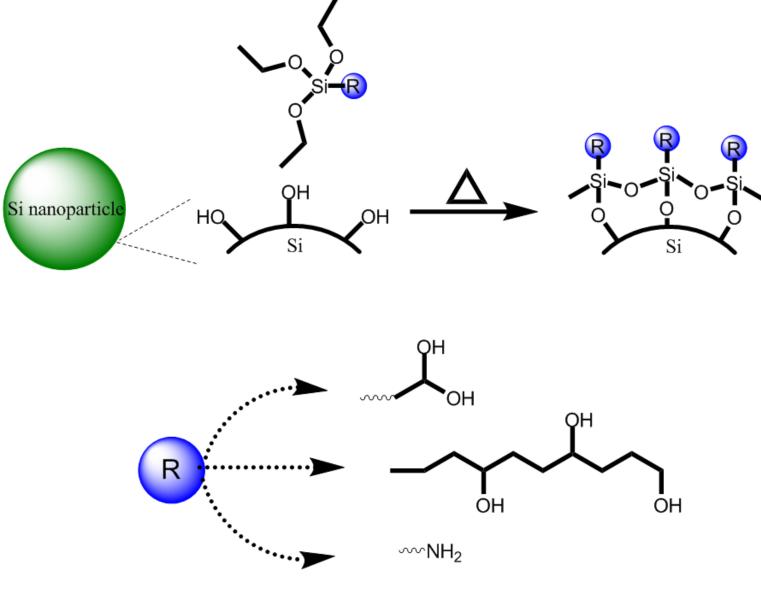
The findings of this study will be used as reference data for future work with electrospun Si/C/ polymer nanofiber electrodes. This future investigation will determine how electrode morphology affects anode stability.

A separate study will use silane chemistry to functionalize silicon nanoparticles. Silane functional groups will be chosen to maintain intimate contact

between Si nanoparticles and the polymer binder during battery cycling.

CONCLUSIONS

PAA/CMC and PAA/PVBAA systems were successfully crosslinked.


ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of NSF-supported TN-SCORE program (DMR-0907619 & EPS-1004083)

REFERENCES

Koo, B.; Kim, H.; Cho, Y.; Lee, K.; Choi, N.; Cho, J. Angewande. 2012, 52, 8763.

PAA and CMC are promising binders for Si based anodes

• Low swelling in propylene carbonate ($\sim 2\%$)

• High initial capacity (>1,000 mAh/g total) and moderate capacity retention PVBAA and PVDF are poor binders for Si based anodes

• Very low capacities (<300 mAh/g total) and poor capacity retention

Thermally crosslinked binders did not enhance anode stability

• Limited electrolyte absorption may limit the effectiveness of crosslinks

