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Small Interfering RNAs (siRNAs) can be used to 
silence almost any gene in the body, this premise 
allows siRNA to be utilized as a targeted 
therapeutic agent against disease[1]. However, 
intracellular release of siRNA from NPs once they 
have been internalized is a limiting step in siRNA 
bioavailability and bioactivity. Therefore, we have 
developed a vehicle for enhanced siRNA enhanced 
release post-endosomal escape. 

We employ PEG-shielded,  
pH-responsive, endosomolytic, 
micellar nano-polyplexes (NPs) 
formed from diblock copolymers 
for siRNA delivery.  The RNA 
condensing block (orange)  
will undergo charge reversal in 
aqueous solution by the  
hydrolysis of DMAEA to  
acrylic acid and a benign  
alcohol[2].  Because of this  
charge reversal, we posit  
that hydrolytically degradable 
(HDG) siNPs can release siRNA 
into cells more effectively than 
previously established  
non-HDG NPs[3]. 
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%BMA DP MMw (g/mol) Charge (ee) 

40B-HDG 44.3% 113 22,800 + 31.5 

50B-HDG 55.9% 115 21,700 + 25.5 

40B 39.6% 137 23,700 + 41.5 

50B 48.3% 120 27,400 + 31.1 

Polymer Library 

FIGURE 1:: Dynamic light scattering (DLS) measurements were 
preformed on (1) NPs prepared from 50B polymers in pH 7.4 buffer 
and (2) siNPs prepared with 50B polymers and scrambled siRNA at a 
5:1  NH3

+/PO4
- ratio.  siNP solutions allowed to sit 50 min showed two 

particle distributions: pure polymer NPs (~30 nm) and siRNA 
complexed NPs (~200 nm).  After 24 hours the HDG NPs underwent 
self catalyzed decomplexation and release of siRNA, showing only the 
pure polymer peak.   
Note: Curves shifted apart for clarity, Intensity = 0% at D = 1 nm for all curves.  
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FIGURE 2::  The amount of siRNA released from different 
siNP formulations using both HDG and non-HDG 
polymers was measured over time using a RiboGreen® 
RNA assay.  The  40B-HDG siNPs show increased siRNA 
release over time and a faster rate of release when 
compared to non-HDG siNP, especially at higher charge 
ratios.  Furthermore, this trend gives us the ability to 
tune the rate of siRNA release from 40B-HDG NPs by 
simply controlling the charge ratio.  
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FIGURE 4::  MDA-MB-231 cancer cells were treated for 9 
hours with both 50B-HDG and 50B non-HDG siNPs 
loaded with FAM & CY5, FRET-paired DNA.  The FAM 
signal (green) shows the presence of siRNA, while the 
FRET signal (red) implies that siRNA is still complexed 
within siNPs.  Our non-HDG siNPs delivered siRNA into 
the cell, however stable polyplexes still remained 
within the cell. 
 
FIGURE 5: Seeing a much lower %FRET signal, we know 
HDG siNPs have more effective delivery and 
bioavailability of siRNA within cancer cells.    

GENE KNOCKDOWN 

FIGURE 6::  Flow cytometry was used to 
quantify the uptake of siRNA into cells 
treated with  40B HDG and non-HDG 
siNP’s for 6 hrs.  Our HDG system shows 
comparable cellular uptake across 
multiple treatment dosages to the 
established non-HDG system. 
 

FIGURE 7:: Luciferase expressing 
cancer cells were treated for 12 
hours with siNPs loaded with 
siRNA shown by previous 
experiments to inhibit luciferase 
expression.  Both 40B and 50B 
HDG siNPs efficiently silenced 
~75% of gene expression, more 
than non-HDG siNPs and a 
standard transfection agent 
(Lipofectamine). 0

0.25

0.5

0.75

1

1.25

R
el

at
iv

e 
Lu

m
in

es
ce

nc
e 

FIGURE 7 

• Dynamic light scattering data was collected 
through the Vanderbilt Institute of Nanoscale 
Sciences and Engineering (VINSE) core 
facilities.  

• Confocal microscopy was performed through 
the VUMC Cell Imaging Shared Resources, 
(supported by NIH Grants CA68485,  

   DK20593, DK58404, HD15052, DK59637, 
   and Ey008126).  
• This work was supported by the National 

Science Foundation: RResearch Experience for 
Undergraduates, Grant DMR-1005023. 
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CONCLUSIONS AND FUTURE WORK 
HDG siNPs show enhanced siRNA release by charge reversal, and have 

proven to be a novel, effective platform for improved gene silencing by 
increasing intracellular bioavailability.  The polymer chemistry of our NPs has 
been optimized for intravenous treatment[3]; since we have seen efficient 
delivery and release in cancer cells with HDG-siNPs, they prove to be an 
excellent candidate for a therapeutic against metastatic cancers. 

Future work will asses cytotoxicity of HDG siNPs, and study the efficacy 
and bioactivity of siNPs delivered in-vivo. 
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FIGURE 3:  With 50B polymers the HDG siNPs consistently 
show increased siRNA release  at all three charge ratios.  
These results were corroborated  by a Förster resonance 
energy transfer (FRET) study*, where decrease in %FRET 
signal  indicates  decomplexation of siRNA from NPs. 
 *For FRET siNPs were loaded with two FRET-paired labeled DNAs  
  (FAM & CY5) and  %FRET was calculated at multiple time points  
  by exciting the donor dye (FAM).  % FRET =
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