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ABSTRACT

We model the highly reduced thermal conductivity of nanostructured materials observed in nanoribbons. For highly scaled structures, such as
wires with diameters on the order of 20 nm, physical effects beyond classical boundary scattering, including acoustic softening, become impor-
tant. To date, work on acoustic softening has focused on reductions in group velocity. However, a reduction in the group velocity implies that
the phonon dispersion is modified. Here, we investigate how changes in the phonon dispersion manifest in the mean free path, heat capacity,
and group velocity. Including these effects in the modeling of thermal conductivity, we find that softening increases low-temperature thermal
conductivity while reducing high temperature thermal conductivity. We further compare the model to experimental data.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5135584

I. INTRODUCTION

Physical effects beyond classical boundary scattering become
important to thermal transport in highly scaled nanostructured
materials. Previous work by Yang et al.1 provided measurements of
the thermal conductivity for individual silicon nanoribbons of
various sizes and aspect ratios. Their results and analysis suggest
that multiple size-dependent effects contribute to the reduced
thermal conductivity of nanoribbons at scales below where classical
boundary effects dominate. In particular, acoustic softening, which
occurs because of the influence of the atomic coordination near the
surface, alters the thermal transport properties and becomes signifi-
cant in extremely scaled devices.

Initial measurements of single nanowires by Li et al. demon-
strated that the thermal conductivity was significantly reduced
from the bulk value.2 For wires with diameters greater than 22 nm,
the reduced thermal conductivity could be explained through clas-
sical surface scattering effects. However, for 22 nm wires, classical
explanations did not suffice and deviations from a T3 low-
temperature dependence were found. Further work by Chen et al.
measured the thermal conductance of similarly thin CVD grown
silicon nanowires with diameters ranging from 15 nm to 50 nm.3

The measurements confirmed the deviation from a T3 low-
temperature dependence, which Chen et al. attributed to frequency-
dependent boundary scattering; however, their model consistently

predicted higher thermal conductivity near room temperature than
observed. Work by Wingert et al. using Ge and Ge–Si core-shell
nanowires with diameters of 20 nm additionally observed highly
reduced thermal conductivity and modifications to the temperature
dependence of thermal conductivity.4 They found an enhancement
to thermal conductivity at low temperature and a reduction about
room temperature for the Ge–Si core-shell nanowires.

Subsequent work by Wingert et al. examining crystalline Si
nanotubes found thermal conductivities below the limit for boun-
dary scattering and below measured values for amorphous silicon.5

To explain these highly reduced thermal conductivities, Winger
et al. proposed acoustic softening. Building on theoretical and
experimental evidence of the size dependence of the elastic
modulus in nanostructures, Wingert et al. hypothesized that the
phonon group velocity, which is proportional to the elastic
modulus, may be reduced for small wires leading to significant
contribution to reduced thermal conductivity. They additionally
measured significantly reduced elastic moduli for their Si nano-
tubes using nanoscale tensile tests, lending credence to the acoustic
softening hypothesis.

Thermal conductivity can be approximated as κ ¼ 1
3Cvvl,

where v is the phonon group velocity and l is the mean free path
(MFP). In nanostructures, reduced thermal conductivity is usually
attributed to a reduced MFP arising from surface scattering; in
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contrast, acoustic softening causes additional reductions in the
thermal conductivity of nanostructures that arise from a reduction
in v. In the continuum limit, the speed of sound (and thus the long
wavelength phonon group velocity) is proportional to

ffiffiffi
E

p
, where E

is Young’s modulus, implying that a softening of the material
should induce a reduction in the phonon group velocity.

One of the early theoretical explanations for the size depen-
dence of Young’s modulus is the effect of surface strain energy con-
tribution to the energy of the structure.6 When deformed elastically,
structures store energy in both the bulk and the surface but at differ-
ent rates. When the surface area-to-volume ratio becomes sufficiently
large, surface elasticity contributes significantly to the effective elastic
modulus. Studies of the elastic modulus of nanostructures employing
molecular dynamics and ab initio methods have found good qualita-
tive agreement with this theory,7–12 but numerical analyses tend to
predict the onset of softening to occur at much smaller sizes than
observed in experiments. To reconcile the discrepancies between the-
oretical calculations and experimental work, a number of explana-
tions have been proposed, including native oxide layers13–15 and
manufacturing defects.14,16

Additionally, experimental observations of size-dependent
reductions in the effective elastic modulus have been reported for a
number of silicon nanostructures, including wires13,17–19 and canti-
levers.14,20 Yang et al. measure the effective elastic modulus for
nanoribbons similar to the ones that were measured for thermal
conductivity,1 further confirming the link between reduced thermal
conductivity and acoustic softening. Despite this work, the mecha-
nisms and consequences of acoustic softening on thermal conduc-
tivity (especially the temperature dependence of the thermal
conductivity) have yet to be fully elucidated.21

In this paper, we explore how acoustic softening may be incor-
porated into simple thermal conductivity models to give good esti-
mates of the size-dependent thermal conductivity for nanoribbons.
More importantly, we have identified a number of competing
effects that arise when including softening in the models. In partic-
ular, changes to the effective stiffness of a material should have
effects not only on the speed of sound, which is approximated as
the phonon group velocity at the gamma point but also the group
velocity across the dispersion relation. Additionally, through the
altered dispersion relation, scattering rates and heat capacity may
also be altered. Thus, we argue that the size dependence of thermal
conductivity in structures experiencing size-dependent softening
likely arises from a combination of these mechanisms, which may
also give rise to changes in the temperature dependence of the
thermal conductivity.

II. THERMAL CONDUCTIVITY MODEL

To model the thermal conductivity of nanoscale ribbons, con-
sider the frequency-dependent Landauer-like equations proffered
by Callaway and Holland,

κ ¼ 1
3

ð
Cv(q)vg(q)Fg(q)l(q)dq, (1)

where the mean free path and specific heat are approximated as

such:

l(ω) ¼ vg(ω)
vg(ω)

b
þ Aω4 þ Pω2T exp

�Cu

T

� �� ��1

, (2)

Cv(q) ¼ 3�h2

2kBπ2
1
T2

q2ω2(q)e�hω(q)=kBT

(e�hω(q)=kBT � 1)2
: (3)

Here, vg is the group velocity, and Fg is a reduction factor for the
MFP based on surface scattering. All of the terms in Eq. (1) are
dependent on the dispersion through the wavevector q. The bulk-
like phonon MFP (l(ω)) includes terms for grain boundary scatter-
ing (vg(ω)=b), impurity scattering (Aω4), and phonon–phonon
scattering (Pω2T exp (� Cu=T)). Scattering rates of this form have
been widely used to model thermal conductivity; however, these
rates rely on fitting parameters. Further, these forms are derived
from a long wavelength approximation ignoring the effect of
optical modes. More recent work calculating relaxation times using
ab initio methods22 have succeeded in modeling the thermal con-
ductivity of silicon. These studies have indicated that at high
frequencies, the dependence on the scattering rate deviates from
the ω2 dependence used here, driven by the ω4 dependence of
Umklapp scattering, and the scattering matrix differs significantly
from the long wavelength approximation for frequencies above a
critical frequency.22 Despite this, we continue to use the above
terms for scattering rate as the exact form should have a limited
effect on the overall results. Previous studies of size effects have
focused on Fg , which encapsulates the effect of surface scattering.
Additional size effects enter through vg , where size-dependent soft-
ening reduces the group velocity. For the heat capacity (Cv) and the
MFP (l), the size dependence is more indirect, arising from the
modification to phonon frequencies (and energies) that is implied
by softening of the dispersion.

For a softened dispersion relation, we use the BvKS (Born-von
Karman-Slack) model, a quarter sine wave, with parameters that
were found to reproduce the bulk thermal conductivity of
silicon.23,24 Softening is incorporated into the model by modifying
the dispersion relation so that it becomes

ω ¼ 2
π
Fsvbq0 sin

πq
2q0

� �
, (4)

where Fs is proportional to the ratio of the softened speed of sound
to the bulk speed of sound vb. For the maximum reductions in
Young’s modulus reported in the literature,1,5,17,19,20,25 this ratio
ranges as low as Fs ¼ 0:4 to Fs ¼ 0:8 for the smallest measured
structures, but assumes values up to Fs ¼ 1 for an unsoftened
(bulk) wire. A review of size-dependent mechanical properties indi-
cates that there is a high degree of scatter in the size-dependent
Young’s moduli reported from experiment,26 and the theoretical
work predicted that softening should not be significant until
smaller sizes than seen in experiment.14,16 For this work, we deter-
mine Fs by fitting the data from Yang et al.1 for Young’s modulus
vs hydraulic diameter. Yang et al. have reported both Young’s
modulus and thermal conductivity for sets of Silicon nanoribbons.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 127, 204302 (2020); doi: 10.1063/1.5135584 127, 204302-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


We fit Young’s modulus with the function

E ¼ Ebulk
1þ exp �k(dh � d0)½ � , (5)

where k and d0 are fitting parameters related to the slope of the
decreasing Young’s modulus and the diameter, where
E=Ebulk ¼ 0:5, respectively. Ebulk is the bulk Young’s modulus. The
fit (Fig. 1) results in k ¼ 0:240 nm�1 and d0 ¼ 25:9 nm. Ebulk for
the fit is 176:8GPa, which is in line with experimental and theoret-
ical values for silicon.15,27,28 The sound speed reduction factor is
then defined as

Fs ¼
ffiffiffiffiffiffiffiffiffiffi
Enano
Ebulk

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ exp �k(dh � d0)½ �

s
: (6)

We note that in this definition the fitted bulk modulus cancels out.
From this, we find that Fs ¼ 0:55 corresponds to a hydraulic diam-
eter of approximately 22 nm.

Using these softened phonon frequencies, the effects of soften-
ing can be incorporated into the MFP and heat capacities, as well
as the group velocities. The consequences of these physical effects
are explored below.

A. Group velocity

Changes in group velocity are the most obvious factor that
occurs with acoustic softening. From a continuum point of view,
the presence of a dominating surface alters the elastic-modulus
resulting in an effective modulus (Enano) for the nanostructure. The
speed of sound in the nanostructure is then related to the effective

modulus as vs ¼
ffiffiffiffiffiffiffi
Enano
ρ

q
. Therefore, if the effective modulus is

reduced in a nanostructure because of the surface softening, so too
should the group velocity. However, this reduction implies that
there should be a reduction in the group velocity not only at the
gamma point but also across the entire first Brillouin zone (FBZ).
More explicitly, a reduction in the elastic modulus reduces both the
slope of the dispersion (group velocity) at the center of the FBZ
and the phonon frequencies at the edge of the FBZ, which are
also proportional to

ffiffiffiffiffiffiffiffiffiffi
Enano

p
.

B. Mean free path

A less obvious factor that may be affected by acoustic soften-
ing is the mean free path. In nano-structured devices, the MFP is
controlled by multiple features: surface scattering, grain boun-
dary scattering, impurity scattering, and phonon–phonon scatter-
ing. For both surface scattering and grain-boundary scattering,
the MFP is set by the geometry of the scattering surfaces, i.e., the
geometry of the object, included through Fg , which is calculated
from Monte Carlo ray tracing (MCRT) discussed in Sec. I, and
grain size, respectively. As the nanostructures we are interested in
are formed via epitaxy, grain-boundary scattering should result
in a relatively small influence on the overall MFP and will be
ignored. Additionally, grain-boundary scattering is not sensitive
to softening effects.

1. Geometric boundary scattering

For structures with a single dominant dimension, e.g., films
and wires, the characteristic length is used directly to estimate the
boundary scattering. In structures that have more than one govern-
ing dimension, we have several options. First, we can use an effec-
tive size, such as a Casimir length. Second, all device dimensions
can be included through Mathieson’s rule. And finally, we can use

FIG. 1. Fit of Young’s modulus vs hydraulic diameter for nanoribbons from Yang et al.1 Inset: fit extended to 0 nm hydraulic diameter.
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a more detailed model of the scattering, such as Monte Carlo ray
tracing, that rigorously accounts for several effects, such as corners
and specularity. To compare results from our softened thermal
conductivity model with nanoribbons, such as those produced by
Yang et al., we use the final method as the presence of two domi-
nant dimensions (width and height) reduce the accuracy of the first
two options. Parametric sweeps of thick ribbons with aspect ratios
from 1 to 15 (similar to the aspect ratios seen in Ref. 1) have been
reported by Park et al.29 and indicate that for structures between
these ratios, the aspect ratio must be included in modeling the geo-
metric reduction of thermal conductivity. In this regime, both cross
sectional dimensions strongly influence the resulting MFP, and
considerations such as corner effects become important, so we use
MCRT to model boundary scattering. While it provides accurate
boundary scattering, the MCRT method can be computationally
intensive; so, to isolate and rapidly explore the effects of modifying
the dispersion relation on thermal conductivity, we also present
systems that include a single characteristic dimension.

In the MCRT approach, a calculated geometric factor
Fg(q, w, h) ¼ Λn(q)=Λb(q) is the ratio of the actual nanostructure
mean free path dictated by the boundaries scaled by the mean free
path in a bulk material. The MCRT procedure takes its inspiration
from the well known Fuchs–Sondheimer (FS) formalism30,31 first
used to describe electrical conductivity in thin films and later
widely used to treat phonons.1,29,32 Under the Fuchs–Sondheimer
(FS) formalism, the geometric reduction arises from the influence
of a (partially) diffuse surface on the MFP of a carrier (e.g., an elec-
tron). At any point in the structure, the influence of a surface at
some distance from that point will cause a reduction in the mean
free path due to the change in particle momentum when scattered
off the surface. By integrating over all interior points and all direc-
tions to the surface, the reduction in the mean free path can be
computed.

In our case, we have replaced the integration in the FS model
with a MCRT procedure following McGaughey.33 This replacement
allows us to incorporate specularity and other geometric features
into our model not directly available in the FS model. The proce-
dure, outlined in Fig. 2, is as follows. First, a free flight distance
dfree is pseudo-randomly selected from an exponential distribution
with a mean of lbulk and an initial direction is pseudo-randomly
selected. In the second step, ray tracing is employed to determine
the distance (l) from the initial point to the surface along the
selected direction. If dfree , l, then the free path for that trial is
dfree. If dfree . l, then we treat the interaction with the surface as
either diffuse or specular. The selection is made pseudo-randomly
based on the specularity parameter p: the fraction of specular
events. The parameter p ranges from 0 (entirely diffuse) to 1
(completely specular) and is treated as a free parameter in the sim-
ulation. In the diffuse case, the free path for the trial is l. For specu-
lar events, a new direction is chosen by inverting the directional
component normal to the surface, and ray tracing is continued
with dfree ¼ dfree � l until either a diffuse event or dfree is reduced
to below zero. In the case of ray tracing with specular reflections,
the free path for the trial is the sum of all the ray lengths
l ¼ l1 þ l2 þ � � � þ ln. Additional trials are calculated using the final
position of the previous trial as the starting position for the new
trial, and the reduced MFP is calculated as the average of the free

paths of all the trials. For a specularity of 1 (i.e., no surface scatter-
ing), the MCRT calculations recover an Fg ¼ 1, verifying the
model. For the calculations in this report, we consider the limiting
case of a fully diffuse boundary (p ¼ 0).

2. Impurity and phonon–phonon scattering

While grain boundary and geometric surface scattering are
not affected by acoustic softening, impurity and phonon–phonon
scattering can be. As both of these scattering rates have a non-
linear dependence on the frequency (usually modeled as a power
law), the effects on the scattering rate of a modification to the dis-
persion relation persist in the contribution to the MFP term result-
ing from both these phenomena.

To demonstrate this more clearly, we consider the Callaway
models for scattering. These power law formulas, which we use for
scattering, are23,24,34

τ�1
I (ω) ¼ Aω4, (7)

τ�1
pp (ω) ¼ Pω2T exp

�Cu

T

� �
, (8)

where A, P, and Cu are fitting parameters that depend on the mate-
rial and phonon branch and are taken from the literature,23,24

where they are found to reproduce bulk Si thermal conductivity
well. At the nanoscale, the choice of parameters should not have a
large effect on our results as surface scattering will dominate. We
do not include terms for normal scattering, and thus results for
scattering at low temperatures should be viewed with caution.
However, at low temperatures, the thermal conductivity is domi-
nated by the heat capacity. Formulating these relations as MFPs

FIG. 2. MCRT procedure.
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then introduces the dispersion relation through the group velocity,

lI(ω) ¼
vg(ω)

Aω4
, (9)

l pp(ω) ¼ vg(ω)

Pω2T exp �Cu
T

� � : (10)

Therefore, a modified dispersion due to acoustic softening will alter
the MFP. This effect is captured in the MCRT.

For phonon–phonon softening, in addition to the group veloc-
ity (vg(ω)) and the frequency (ω), the fitting parameters are also
modified by softening. The factor P can be expressed as
P ¼ �hγ2

Mv2ΘD
.35 The Debye temperature, ΘD, and the Grüneisen

parameter, γ, are both proportional to the softening fraction Fs.
This leads to a dependence on the softening factor of 1=Fs for P.
Additionally Cu / ΘD. Thus, for the phonon–phonon scattering,

the softened phonon–phonon scattering is

τ�1
pp (ω) ¼ FsPω

2
bT exp

�FsCu

T

� �
, (11)

where ωb is the unsoftened phonon frequency.
For impurity scattering, a softened dispersion results in an

increase in the MFP across the FBZ. This is in contrast to the
phonon–phonon scattering. In this case, the P parameter, the fre-
quency, and the group velocity softening dependencies cancel out,
leaving only the effect of softening on Cu. This results in a small
decrease in the MFP from softening. For the τ / 1

ω4 behavior calcu-
lated by Ward and Broido,22 the frequency dependence on soften-
ing would in contrast cause an increase in the MFP. As discussed
below in and seen in Fig. 4, the difference between the two models,
when incorporating surface scattering, should be small.

To examine the combined effects of impurity and phonon–
phonon scattering, we use a system without surface scattering
(where the only geometric scattering included is a grain-boundary
scattering term) and incorporate uniform softening (Fig. 3). In this

FIG. 3. MFP as a function of reduced
wave vector for softened and
un-softened silicon, Fs ¼ 0:44 at
300 K, and this softening corresponds
to a wire with a diameter of 20 nm. (a)
Impurity scattering MFP term, (b)
phonon–phonon scattering MFP term,
(c) MFP from combined impurity and
phonon–phonon scattering, (d) differ-
ence between softened and
un-softened case in subfigure (c).
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system, the effects of phonon–phonon scattering dominate, and the
MFP is reduced, by up to 20%. However, for the major portion of
the FBZ, it is clear that the combined MFPs are much longer than
the characteristic size of the nanostructures that we are interested in.
For structures where we would see softening of this degree, we expect
that surface scattering will occur on a size scale of around 10�8 m
(10 nm), where the MFPs from the combined phonon–phonon and
impurity scattering are on the order of approximately 10�8–10�5 m.

To demonstrate the characteristics of softening effects on MFP
as a function of wavevector in a structure with a sufficiently small
characteristic size, we add boundary scattering to the MFP via
Matthiessen’s rule. This is akin to a round wire with a diameter
equal to the characteristic size. For the structures that show soften-
ing experimentally, and which we wish to investigate, the character-
istic size is between 20 nm and 40 nm. The effective MFP as a
function of the reduced wavevector is plotted in Fig. 4. Since the
shortest MFP component will dominate the total MFP, the inclu-
sion of a nanoscaled surface scattering term results in that term
dominating the MFP. Consequently, the influence of softening on
the MFP is diminished. For a 28 nm characteristic size, the reduc-
tion in the MFP is less than 2% for all wavevectors. For a character-
istic size of 20 nm, the reduction in the MFP never exceeds 12% for
any wavevector.

C. Heat capacity

In addition to the scattering rate, a change in phonon fre-
quency and thus in phonon energies, also affects the heat capacity.

In general, the reduction in the frequencies of phonons will result
in a reduction in the energy of phonons with high wavevectors and
thus an increase in the occupation of those states at a given temper-
ature. Deriving a model for heat capacity using a spherical integra-
tion up to the cutoff wavevector, we have for each wavevector q,36

Cv(q) ¼ 3�h2

2kBπ2
1
T2

q2ω2(q)e�hω(q)=kBT

(e�hω(q)=kBT � 1)2
: (12)

Examining the spectral heat capacity across the FBZ, we see
that softening should result in a slight increase in the spectral heat
capacity, especially for longer wavevectors (Fig. 5). This increase is
much smaller than the increase seen in the MFPs at room
temperature.

As the heat capacity is responsible for a large portion of the
temperature dependence of thermal conductivity, examining the
temperature dependence of the heat capacity and the effect of soft-
ening on it become interesting. In Fig. 6, we plot the heat capacity
as a function of temperature and note that there are significant
changes on the heat capacity with softening. At low to intermediate
temperatures, the heat capacity is significantly increased by the
softening. This increase is mostly due to increased occupation
numbers at low temperatures for the softened case, offsetting the

FIG. 6. Heat capacity as a function of temperature equivalent to 28 nm and
20 nm diameter wires (Fs ¼ 0:79 and Fs ¼ 0:44) and without softening.

FIG. 4. Spectral MFP with and without softening (top) for a structure with a
characteristic size of 28 nm and Fs ¼ 0:79, and (bottom) for a structure with a
characteristic size of 20 nm and Fs ¼ 0:44.

FIG. 5. Heat capacity as a function of reduced wavevector with and without
softening.
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decreased phonon energy. At higher temperatures, as expected,
both heat capacities converge; at room temperature, the heat capac-
ity is increased by 7% over the unsoftened case for Fs ¼ 0:44.

III. DISCUSSION

While each of these factors contains interesting deviations
from bulk and bulk-like values when acoustic softening is included,
in order to see how acoustic softening should manifest in experi-
mental measurements, we must combine these factors to calculate
thermal conductivity.

Using as our example case a nanowire with a diameter of
20 nm and a softening factor of 0.44 [from Eq. (6)], we compute
the spectral thermal conductivity. This example is of a similar scale
to the first wires where anomalously low thermal conductivity was
reported.2 When we include the effects of softening on the heat
capacity, phonon group velocity, and mean free path, we see that
spectral thermal conductivity, instead of undergoing a flat reduc-
tion as seen for reducing the group velocity alone, The thermal
conductivity reduction varies around the velocity-only value
(Fig. 7).

While the contribution to thermal conductivity from longer
wavelengths, where the difference in the softening models exists, is
small, the overall change in the thermal conductivity between the
two softening models is appreciable. For the model neglecting the
effect of softening on the MFP and heat capacity, the thermal

conductivity at this size scale is approximately 1.7% lower than the
full softening model (4:76W=mK vs 4:84W=mK).

In addition to spectral thermal conductivity at room tempera-
ture, we can look at the temperature dependence of thermal con-
ductivity under our softened model. In Fig. 8, we compare the
softened and unsoftened thermal conductivity from the BvKS dis-
persion for 20–40 nm characteristic sizes with softening factors
from Eq. (6). First, the change in the thermal conductivity is not
uniform. While at higher temperatures, the thermal conductivity is
reduced due to the softening, the low-temperature thermal conduc-
tivity (below about 75 K) is increased. Additionally, the temperature
at which the peak thermal conductivity occurs is reduced. If soften-
ing were only affecting the group velocity of phonons, we would
not expect to see these features, but rather a uniform shift of the
thermal conductivity downward with temperature.

To further explore the origins of the changes in the temperature
dependency, we consider the effects of each term in the kinetic
theory independently on the temperature dependence of the thermal
conductivity. In Fig. 9, we see that reducing the group velocity with a
softening factor results in a uniform reduction across temperature.
The other two factors in the thermal conductivity have significantly
more variation over temperature. For the softening of the MFP, the
effect on the thermal conductivity is to reduce the thermal conduc-
tivity slightly at higher temperatures, while little effect is seen at low
temperatures. For the heat capacity factor, the thermal conductivity
is increased by softening across all of the temperatures, but with the
increase being mostly more dominant at lower temperatures and
nearly disappearing by room temperature.

A. Comparison to experiment

To compare the results of our model with experiment, we
focus on the results obtained Yang et al.1 Here, thermal conductiv-
ity and elastic modulus were measured for two groups of nanorib-
bons with different thicknesses (a thick group between 30 and
32 nm thickness, and a thin group between 18 and 20 nm thick-
ness). In each group, the width was varied, which varies the
surface-to-volume ratio of the wire.

FIG. 7. (a) Spectral thermal conductivity as a function of reduced wave vector
{i.e., thermal conductivity per inverse wave vector [W=(mK)=(1=m)]} for nano-
structure with a characteristic size of 20 nm for unsoftened, vg only softening,
and softening including group velocity, MFP and heat capacity (Fs ¼ 0:44). (b)
Percent difference between the unsoftened and softened models.

FIG. 8. Thermal conductivity as a function of temperature for a structures of
various characteristic sizes with and without softening.
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We have attempted to bracket the observed thermal conduc-
tivities with our MCRT model including a softening factor, Fs. In
Fig. 10, thermal conductivities for wires with 20 nm and 30 nm
thicknesses calculated with MCRT model with softening factors of

1.0 (unsoftened) and 0.44 (corresponding to a 20 nm diameter
wire) are plotted with the experimental data. From this, we are able
to model the thermal conductivity of the thick wires very well with
an unsoftened MCRT model. However, the unsoftened MCRT
models predict significantly higher thermal conductivity for the
thin group of wires than observed.

For the thin group, we are able to bracket the data with our
softened model using Fs ¼ 0:55. This softening corresponds to a
ratio of Enano=Ebulk of around 0.30, which is consistent with the
maximum softening experimentally observed19,20 and for a struc-
ture with a hydraulic diameter of approximately 22 nm using the
data from Yang et al.1 With this level of softening, we see that all of
the ribbons in the thin group are bracketed by the MCRT.

Using Fs estimated from Eq. (6), MCRT simulations for both
thick and thin ribbons are shown in Fig. 11. As the experimental
ribbons have a thin oxide layer (approximately 2 nm thick1) that
should play little role in thermal conductivity and that is not
modeled in the MCRT simulations, 4 nm is removed from both the
width and height of the ribbon when calculating the MFP with
MCRT. With this model, we observe a close correspondence
between the model and the experimental values.

While this model indicates that acoustic softening can explain
the lower thermal conductivity for the thin group of wires, it does
not explain fully the transition from unsoftened to softened that
occurs with a move from the thick to thin ribbons. Some of the
apparent sharpness may be geometric in nature, with the different
thicknesses trending together for very small structures (high S/V),
where the scattering is most strongly controlled by the width, but
differing in the S/V regime where both thickness and width
become important. Thus, the placement of the 1/(S/V) type curve
for the thermal conductivities predicted is shifted to lower S/V
ratios for thicker wires and to higher S/V ratios for larger wires.

FIG. 9. Thermal conductivity as a function of temperature for a structure with a
characteristic size of 20 nm (Fs ¼ 0:44) with thermal conductivity from the com-
ponents of the softening model plotted separately.

FIG. 10. Comparison of size sweeps of our thermal conductivity model with
and without softening at 300 K to the thermal conductivity reported by Yang
et al.1 for nanoribbons at 300 K.

FIG. 11. Comparison of size sweeps using our thermal conductivity model with
Fs given by Eq. (6) at 300 K with the thermal conductivity reported by Yang
et al.1 for nanoribbons at 300 K. For the ribbons from Yang et al., 2 nm of oxide
is discounted in the calculation of the hydraulic diameter.
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Another factor affecting the apparent suddenness of the transition
is the high degree of sensitivity of acoustic softening phenomena to
such influences as surface recombinations,9 the relative size of
oxide layers,13–15 and etching defects.14,16 Computational work by
Shim et al. has shown that the surface recombination of various
silicon surfaces has a strong impact both on the magnitude of soft-
ening and the direction, indicating that for some recombinations a
nanoscale stiffening can occur.9

While comparison to our model for the effect of acoustic soft-
ening on thermal conductivity with the size-dependent data gives
us some confidence that our method produces results that match
the general trends seen in experiment, it does not fully disentangle

if softening effects in heat capacity and scattering are observed in
the experimental data. However, because of the difference in the
effects of softening at low and high temperatures, we examine the
temperature-dependent thermal conductivity reported by Yang
et al.1

In Fig. 12, we show thermal conductivity from MCRT for
wires of the same sizes as Yang et al., with Fs from Eq. (6). Again,
when computing the MFP, the dimensions of the nanoribbons
were reduced by 4 nm to account for the approximately 2 nm thick
oxide commonly present in experiment. We calculate thermal con-
ductivity using both a softened and unsoftened model and
compare them to the data reported by Yang et al.1 Importantly,

FIG. 12. Calculated thermal conductivity for wires with sizes matched to those reported by Yang et al.1 without softening, with softening from Eq. (6).
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including heat capacity and MFP effects in the softening shifts the
peak thermal conductivity to lower temperature. At lower tempera-
tures, the thermal conductivity is increased, while at higher temper-
atures, the thermal conductivity is decreased. This is similar to the
effect seen for Ge–Si core-shell wires.4

When compared with the values reported by Yang et al. for
the temperature-dependent thermal conductivity in thin wires, a
few features are notable. First, there is a flatter dependence on tem-
perature after the peak thermal conductivity in the reported values
than for the softening model. In the reported values, Umklapp scat-
tering begins to have a noticeable effect (i.e., thermal conductivity
stops increasing rapidly) around 125–150K. This is in contrast to a
model including contributions from softened heat capacity and
mean free paths where Umklapp scattering begins to dominate
around 75–100K.

We attribute the discrepancies between the models and experi-
ment to the highly approximate nature of the dispersion relation-
ship used and the softening method. In particular, the fitting
parameters for phonon–phonon scattering and for impurity scat-
tering are taken from bulk silicon and vary for the nanostructures
considered due to the processing. The lack of normal scattering in
the model may additionally reduce the accuracy of the model at
low temperatures. Additionally, the model for Fs used here is based
on Young’s modulus measurements, is entirely empirical, and may
not completely capture the pertinent physics related to transport
properties. Moreover, in contrast to our assumption that the soften-
ing is uniform across the cross section of the nanostructures we
consider, effects of the surface energy are likely to be strongest at
the surface of the wire and decay toward the center of the wire.
Therefore, the approximation of a uniform distribution of strain
energy should be examined. Finally, the effects of the surfaces on
dispersion relation of the wires may not be the same for both the
transverse modes and the longitudinal modes; the effects of oxide
layers on the effective elastic modulus are not the same for exten-
sion and bending.

IV. CONCLUSIONS

We have developed a model of acoustic softening that incor-
porates the effects of changes in the elastic modulus on compo-
nents of thermal conductivity beyond the phonon group velocity.
By considering how a change in the elastic modulus (and thus the
continuum speed of sound) should impact the general form of the
dispersion relation, we are able to extract the expected influence of
softening on heat capacity and various scattering processes.
Including these factors allows us to match the general size depen-
dence of thermal conductivity for wires for which acoustic soften-
ing has been observed.

Our model indicates that acoustic softening should modify
more than just the group velocity. In particular, the heat capacity
should be increased at low temperatures, while the mean free path
should be slightly reduced. This results in a shifting of the peak
thermal conductivity to lower temperatures and an increase in the
thermal conductivity at low temperatures. This is similar to effects
seen in Ge–Si core-shell wires,4 and the effect is likely to be impor-
tant for the thermal conductivity at low temperatures and for wires
with surface layers.

This model indicates that the influence of acoustic softening
phenomena at the nanoscale implicates changes in the dispersion
relation that occur on these scales. Incorporating more fine-grained
predictions of how the dispersion relation should be modified by
surface phenomena at the nanoscale should improve these results
and increase the ability of thermal conductivity models to predict
nanoscale thermal conductivity in size regimes where size-
dependent elastic-modulus effects occur.
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