Doping-driven electronic and lattice dynamics in the phase-change material vanadium dioxide

Kannatassen Appavoo,¹,* Joyeeta Nag,² Bin Wang,²,³ Weidong Luo,²,⁴,⁵ Gerd Duscher,⁴,⁶ E. Andrew Payzant,⁴ Matthew Y. Sfeir,⁷ Sokrates T. Pantelides,²,⁴,⁸ and Richard F. Haglund, Jr.²,†

¹Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
²Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
³School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
⁴Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
⁵Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
⁶Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
⁷Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
⁸Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, USA

(Received 15 February 2018; revised 23 December 2019; accepted 21 August 2020; published 23 September 2020)

Doping is generally understood as a strategy for including additional positive or negative charge carriers in a semiconductor, thereby tuning the Fermi level and changing its electronic properties in the equilibrium limit. However, because dopants also couple to all of the microscopic degrees of freedom in the host, they may also alter the nonequilibrium dynamical properties of the parent material, especially at large dopant concentrations. Here, we show how substitutional doping by tungsten at the 1 at. % level modifies the complex electronic and lattice dynamics of the phase-change material vanadium dioxide. Using femtosecond broadband spectroscopy, we compare dynamics in epitaxial thin films of pristine and tungsten-doped VO₂ over the broadest wavelength and temporal ranges yet reported. We demonstrate that coupling of tungsten atoms to the host lattice modifies the early electron-phonon dynamics on a femtosecond timescale, altering in a counterintuitive way the ps-to-ns optical signatures of the phase transition. Density functional theory correctly captures the enthalpy difference between pristine and W-doped VO₂ and shows how the dopant softens critical V-V phonon modes while introducing new phononic modes due to W-V bonds. While substitutional doping provides a powerful method to control the switching threshold and contrast of phase-change materials, determining how the dopant dynamically changes the broadband optical response is equally important for optoelectronics.

DOI: 10.1103/PhysRevB.102.115148

I. INTRODUCTION

The incorporation of dopant atoms into a crystalline or amorphous material is a ubiquitous technique in condensed-matter science that is also exploited in most solid-state device technologies [1,2]. Doping is typically a strategy for tuning the electronic structure of a material, thus modifying functional properties such as transport, space-charge depletion, or the dielectric function, either to elicit or to enhance certain phenomena or to satisfy specific requirements of a technology. For example, in reconfigurable technologies based on phase changes, such as optical data storage [3,4] and optoelectronics [5–7], doping a phase-change material (PCM) affects the electro-optical contrast between the initial and final states by initiating a change from metal to insulator or from a crystalline to an amorphous structure. In order for technologies based on PCMs to operate at THz speeds, it is equally important to understand how microscopic degrees of freedom that have been modified by dopant atoms respond dynamically to electronic or structural modification by an ultrafast light pulse.

For example, in a PCM, the structural and electronic rearrangements play an important role in dictating key aspects of the transformation—including switching speed, energy cost, and dynamic modulation of the dielectric function. While the effect of doping on PCMs has been studied in thermal equilibrium for phase transitions induced by modulating heat, pressure, or electric fields, little is known about how doping alters the ultrafast electronic and structural response of doped PCMs [8–10].

Vanadium dioxide (VO₂) is a canonical PCM with competing crystalline phases that dictate its metallic and insulating properties [11–13] and appears to have significant applications in field-effect transistors [14] and ultrafast optoelectronics [10,15,16]. Vanadium dioxide exhibits a reversible solid-solid phase transformation that combines an insulator-to-metal transition (IMT) with a nearly simultaneous structural rearrangement from the monoclinic insulating (M1) phase to a rutile, tetragonal (R) form [17,18]. The discovery that the phase transition could be induced optically [19] has generated enormous interest in the potential of VO₂ thin films [10,20] and nanostructures [16] as all-optical switches.

Recent studies of the femtosecond photoinduced phase transition in VO₂ have focused on those processes with characteristic times less than 100 fs [10,15,21], effects of lattice

*Corresponding author: appavoo@uab.edu
†Corresponding author: richard.haglund@vanderbilt.edu
mismatch [22], and substrate thermal properties [23] during the transition. However, for VO$_2$ applications in photonics and electro-optics, it is also critical to understand whether or not doping can enable systematic tuning of the dynamics of light-induced IMT transition, such as switching-threshold fluence and relaxation times [20]. Yet remarkably, modifying the insulator-to-metal switching dynamics by doping VO$_2$ has not, to our knowledge, been attempted up to now. There is substantial evidence that the IMT can be induced by impulsive laser-driven hole doping on an ultrafast timescale [16,24], suggesting that the dynamics of the IMT may be controllable by changing the conduction-band population in the initial state. In particular, control of both the fluence threshold for switching and the relaxation dynamics from the metallic state would be desirable.

In this paper, we demonstrate that substitutional doping of tungsten at a level of approximately 1 at. % drastically modifies the dynamics of the photoinduced phase transition in VO$_2$, including both the coherent lattice response and charge-carrier dynamics. The fact that the doping occurs substitutionally, confirmed by atomic-resolution scanning-transmission electron microscopy, makes it possible to use density functional theory to calculate and interpret changes in the phonon spectrum and the effects of added carriers (here electrons) on the doped VO$_2$. Deploying broadband femtosecond spectroscopy, we show how the added electrons and microscopic deformations of the crystal lattice by the W dopants modifies the structural and electronic properties of VO$_2$ from femtosecond to nanosecond timescales. The added mass of the W-dopant atoms also modifies the electron-lattice coupling in the VO$_2$ host lattice, as seen in changes in the transient coherent phonon response of the system. The data presented here span the largest wavelength range and longest timescale of ultrafast measurements of the photoinduced phase transition in VO$_2$ yet measured, with or without doping. Moreover, the results suggest that doping can provide a general strategy for temporally tailoring the electro-optical contrast as well as the electron and phonon dynamics of PCMs.

II. FABRICATION AND STEADY-STATE CHARACTERIZATION

Epitaxial thin films of pristine and W-doped VO$_2$ were grown on c-cut sapphire (0001) using an established pulsed-laser deposition protocol [25]. The doped film was prepared using a 2 at. % W-doped V target to grow W$_{0.01}$V$_{0.99}$O$_2$ thin films. Rutherford backscattering, x-ray diffraction, and scanning electron microscopy (SEM) were employed to characterize both sets of samples and confirm that the tungsten dopants did not aggregate. In all studied samples, scanning electron micrographs displayed no substantial change in film texture. White-light transmission measurements showed that the W doping of VO$_2$ tunes the critical transition temperature downward [Figs. 1(a) vs 1(c)], here from $T_c = 70^\circ$C to $T_c = 48^\circ$C, with changes both in the electronic and structural properties. The normalized white-light (WL) transmission also shows that W : VO$_2$ undergoes a more gradual phase transition than the pristine VO$_2$ when thermally cycled, exhibiting reduced optical contrast from about 42% in pristine VO$_2$ [Fig. 1(a)] to about 28% in W-doped VO$_2$ [Fig. 1(c)] relative to their respective low-temperature insulating states. Variable-temperature x-ray diffraction was employed to compare the in situ structural phase transition in both films, with 3D-isoline contours mapped onto two dimensions following the (010) monoclinic VO$_2$ family of planes that transform to the (100) tetragonal plane in the high-temperature state. The second- and fourth-order reflections of this (010) family of planes are tracked in the pristine [Fig. 1(b)] and W-doped [Fig. 1(d)] VO$_2$ films, respectively, as these have the highest intensity. In contrast to the sharp transition as pristine VO$_2$ evolves between the monoclinic and rutile structures, the W:VO$_2$ film shows a broader monoclinic peak that gradually and smoothly shifts to the tetragonal peak position when thermally cycled. This same contrast between abrupt versus gradual structural transitions is also evident in the signatures of the electronic transition (insulator to metal) in the WL-transmission hysteresis, and is consistent with observations in many experiments.

To determine unambiguously the location of the W ions, aberration-corrected atomic-number Z contrast scanning-transmission electron microscopy (STEM) was employed in combination with electron energy loss spectroscopy (EELS). Analysis of these data [Fig. 1(e)] reveals that the bright column (white arrow) is significantly more intense than the others and can be conclusively attributed to tungsten ions substituting for vanadium ions within the VO$_2$ lattice. This makes it possible to calculate the relative stability of the M1 and R phases both before and after doping using density functional theory, predicting the changes in critical temperature and enthalpy cost of the transition, as discussed in Sec. IV.

III. ULTRAFAST DYNAMICS IN PRISTINE VERSUS TUNGSTEN-DOPED VO$_2$

Figure 2 summarizes the effect of pump-laser fluence on the femtosecond dynamics of photon-induced phase transitions in pristine and W-doped VO$_2$ films in a transient-absorption experiment. Femtosecond transient absorption (TA) measurements were conducted using a commercial 1 kHz amplified Ti:sapphire laser system. Briefly, the pump pulse ($\lambda_{pump} = 1100$ nm, pulse duration of about 50 fs) is the signal beam from a collinear optical parametric amplifier pumped by the 800 nm fundamental output of an amplified Ti:sapphire laser. The temporally synchronized probe pulse is a white-light supercontinuum generated by focusing the 800 nm light onto a sapphire crystal. The broadband probe yields rich insights into the complex, overlapping spectral signatures associated with the structural (phonon) and electronic dynamics [26,27] of VO$_2$, which change dramatically with pump fluence, particularly near switching thresholds.

Figure 2(a) shows the linear absorption of the metal and insulating phases (left axis) and optical-density contrast (ΔExt$_{M-I}$) as a function of probe wavelength. For wavelengths shorter than 500 nm, the dielectric contrast between insulating and metallic states ΔExt$_{M-I}$ is positive and small, indicating unambiguously the spectral range over which it is advantageous to compare the coherent phonon dynamics between pristine and W-doped VO$_2$ films [red stars in Figs. 2(a)–2(c)]. The coherent phonon dynamics results from displacive excitation of the A_1 “breathing modes” in the insulating-M1 state in VO$_2$ [28–30].
FIG. 1. Equilibrium electronic and structural properties of pristine and W-doped vanadium dioxide. (a), (c) White-light transmission measurements as a function of temperature and (b), (d) *in situ* x-ray diffraction rocking curves of the thermally induced insulator-to-metal transitions. “HC” and “CC” stand for heating and cooling cycle, respectively. The suppressed z axis in the projected 3D isoline contours is the diffraction intensity. (e) Atomic-number scanning-transmission electron micrograph (z-STEM) of the W-doped VO$_2$ sample, combined with electron energy loss spectroscopy (EELS). The inset is an electron beam intensity profile acquired by Fourier analysis of mass peaks along the row of atoms (measured in Å) marked by the red-colored dotted line. Evidence of substitutional doping allows for monoclinic structures of pristine and W-doped VO$_2$ to be calculated (f) using the density functional scheme described in the text. The W atom is represented in red here, with corresponding changes in the bond distances.

The near-IR pump pulse excites these A_1 Raman modes via displacive excitation of coherent phonons, with unusually large oscillation amplitudes that scale linearly with the fluence of the exciting pulse. When the metallic-R phase is generated from the insulating-M1 phase during ultrafast switching of VO$_2$, this transformation corresponds to a symmetry-breaking process with a vanishing coherent phonon dynamics. Increasing the pump fluence decreases the rise time for the metallic...
Figures 2(b) and 2(c) compare the two-dimensional time-resolved data taken for pristine and W-doped VO₂ samples excited by the same pump-laser fluence (∼3.5 mJ/cm²)—corresponding to below-threshold excitation for pristine VO₂ [Fig. 2(b)] but at-switching threshold for W:VO₂ [Fig. 2(c)]—and reveal stark differences between doped and undoped material. The damped oscillatory signature of the coherent phonons is present for the pristine VO₂ even for phase to appear and, consequently, accelerates the decay of the coherent phonon dynamics. In fact, this coherent phonon signature has been successfully employed as a marker for monitoring the phase transition of VO₂ [10].
timescales greater than 5 ps (± 5–10 mOD, red stars indicating the relevant spectral region). However, in the case of W-doped VO2, the complex overlapping electronic signature is convoluted with the coherent phonon signature even for pump-probe time delays greater than 5 ps. Moreover, Fig. 2(c) provides an additional clue that W:VO2 has been switched to its metallic state as the electronic response in the 550–750 nm range does not return to its ground state for times greater than 1000 ps (black star) [23,31]. The return of the original insulating-M1 phase takes place on a much longer timescale, a few tens to hundreds of nanoseconds [23]. For pristine VO2 at the pump fluence of ∼3.5 mJ/cm², this electronic signature returns to its ground state within that same temporal window (black star), as is also the case for all lower pump fluences. Also, we note that for all pump fluences studied [Fig. 2(d)], W-doped VO2 has a lower optical switching contrast, confirming that the change in conduction-band electron concentration electronically via photohole doping or thermodynamically via carrier relaxation and subsequent carrier cooling that mediates the energy transfer to the lattice. Nevertheless, this figure reveals several key features of the W:VO2 dynamics: (i) reduced optical contrast in the spectral range that corresponds to the coherent phonon vibrations for times less than 10 ps (lower positive values in the low-threshold fluence regime); (ii) a systematic and gradual reduction in optical contrast at every fluence; and (iii) a reduced switching threshold fluence $F_{TH}(\text{VO}_2) - F_{TH}(\text{W:VO}_2) \sim 0.5 \text{ mJ/cm}^2$ caused by the W dopant.

Figure 3 shows the differences in long-term dynamics when each sample is pumped at threshold, i.e., ∼3.5 mJ/cm² for W:VO2 and >4.0 mJ/cm² for VO2. We extract the dynamics at three wavelengths to highlight their overall behavior. We can readily compare the response of these samples at threshold; we see for example that the coherent phonon signature is about three time stronger for the pristine VO2 when compared to the W:VO2, with the effect of coherent phonons being more pronounced at shorter wavelengths (here at $\lambda = 480$ nm). Moreover, for the case of the W:VO2, the optical signatures of the coherent phonons exhibit overall a diminished amplitude and a qualitatively different oscillatory response compared to the VO2 sample. This point is discussed further in Sec. IVB.

While optical techniques cannot definitively confirm changes in VO2 structure across the phase transition, as ultrafast x-ray [13,34,35] and electron diffraction [36,37] experiments can, time-resolved optical measurements over very long timescales can lead to qualitatively correct insights because of the starkly different relaxation times of the metallic monoclinic and rutile phases. This is true even though, or in a way because, one is spatially averaging over many individual grains in the films, each grain switching probabilistically as the input pump laser energy thermalizes. The peak metallicity is larger in the undoped sample, consistent with the differing contrast ratios in Figs. 1(a) and 1(c). On the other hand, although W:VO2 requires a lower optical fluence for switching, it reaches maximum metallicity at about 600 ps [red stars in Figs. 3(a) and 3(b)], which is delayed relative to pristine VO2 (∼150 ps). This is the case for all fluences above the switching threshold, suggesting that doping can control the temporal evolution
of VO$_2$ from the insulating monoclinic to the metallic, rutile state, accompanied by spectral changes in its broadband optical response. Importantly, our discussion of whether the samples have undergone the complete IMT is based on whether we observe electronic signatures (550–750 nm) that last for nanoseconds. We note also that our discussion revolves around the case when the sample reaches maximum metallicity, rather than defining a “unique” switching time for the various samples and excitation conditions.

Consistent with Booth et al. [38,39], and the data presented on thermal switching in the equilibrium regime [Figs. 1(a) and 1(b)], the principal effect of the W$^{6+}$ dopant is to lower the energy required to switch the W-doped VO$_2$ film into the metallic state. The lattice distortion induced by the W-dopants extends over a few unit cells and modifies the energy requirement for switching. However, in contrast to the conclusion of Ref. [38] about a structurally driven IMT, Figs. 2(b) and 2(c) clearly show that the appearance of the structural phase transition to a metallic-R state is delayed. Therefore, the picosecond relaxation dynamics of carriers in the conduction band state and the slow growth of the metallic phase after 100 ps represent two distinct mechanisms. At the highest fluences studied, for both samples, band-gap collapse is nearly instantaneous and a subpicosecond insulator-to-metal transition occurs. This is consistent with recent demonstrations of instantaneous band-gap collapse that occurs within 100 fs after excitation to initiate a transition to the metallic rutile state, driven by hot carrier injection [16].

IV. THEORETICAL CALCULATIONS AND DISCUSSION

A. Effect of doping on enthalpy cost of phase transition

First-principles density functional theory (DFT) calculations were employed to evaluate the relative stability of the low-temperature monoclinic (M1) and high-temperature rutile (R) phases of VO$_2$ before and after W substitution, as depicted in Fig. 1(f). We used the Hohenberg-Kohn DFT [40,41] in the non-spin-polarized generalized-gradient approximation [42] plus Hubbard U (GGA+U) [43] approach and the projector augmented wave (PAW) method as implemented in VASP [44–46]. All calculations were performed with an energy cutoff of 500 eV. The Hubbard parameter and exchange interaction were $U = 4.0$ eV and $J = 0.7$ eV, respectively [16,47]. For pristine VO$_2$, the M1 unit cell contains four V atoms and eight O atoms, while the primitive unit cell of the R phase contains only two V atoms and four O atoms. For better convergence of the total energy difference between phases, a double unit cell, consistent in size and shape with the unit cell of the monoclinic phase, was used to calculate the rutile phase. An $8 \times 8 \times 8$ k-point grid was generated using the Monkhorst-Pack scheme. The structures were relaxed so that residual forces on all atoms were smaller than 5×10^{-3} eV/Å. A supercell containing WV$_{31}$O$_{64}$ was used to compute the total energies of the W-doped monoclinic and rutile phases, corresponding to a W concentration of \sim 3 at. %, which is three times as large as the experimental doping, but it makes the calculations feasible.

The calculated M1 phase lattice parameters are $a = 5.68$ Å, $b = 4.61$ Å, $c = 5.45$ Å, with monoclinic angle $\alpha = 122.1^\circ$, in excellent agreement with experimental structure: $a = 5.7529$ Å, $b = 4.5263$ Å, $c = 5.3825$ Å, and $\alpha = 122.60^\circ$ [48]. For the rutile structure, the calculated relaxed structure corresponds to lattice parameters of $a = 4.64$ Å, $c = 2.80$ Å, in good agreement with experimental values of $a = 4.554$ Å, $c = 2.857$ Å. The calculated V-V distance in the rutile phase is 2.86 Å, while the short (long) V-V distances in the low-temperature M1 phase become 2.53 Å (3.18 Å), in good agreement with experiment. The total energy of the monoclinic phase is calculated to be lower than the rutile phase by 96.9 meV per VO$_2$ unit, consistent with the stability of the monoclinic phase at low temperature. For the calculated structure of the rutile phase, the VO$_6$ octahedron also has tetragonal symmetry. The four V-O bonds in the a-b plane have a length of 1.93 Å, while the two V-O bonds along the c direction have a length of 1.95 Å. For the calculated structure of the monoclinic phase, the VO$_6$ octahedron becomes distorted: The longest V-O bond becomes 2.07 Å, while the shortest V-O bond becomes 1.81 Å.

Following the definition of Baur [49] we can calculate the bond-length distortion index (DI) to quantify the distortion of the VO$_6$ octahedron: DI = $\frac{1}{8} \sum_{i=1}^{12} |l_i - l_{avg}|/l_{avg}$, where l_i is the individual V-O bond length, and l_{avg} is the average bond length. For the calculated rutile structure, DI = 0.002, indicating a small distortion of the VO$_6$ octahedron; while DI = 0.044 for the calculated monoclinic structure, indicating a larger distortion of the VO$_6$ octahedron. Following Robinson et al. [50], the variance of the octahedral bond angles in the VO$_6$ and WO$_6$ octahedra is defined as $\sigma^2 = \sum_{i=1}^{12} \theta_i - 90^2/11$, where θ_i is the individual angle between V-O (or W-O) bonds. For the calculated rutile structure, $\sigma^2 = 2.6$ deg2, indicating very small distortion of the VO$_6$ octahedron, while $\sigma^2 = 39.9$ deg2 for the calculated monoclinic structure, indicating large distortion of the VO$_6$ octahedron. For the W-doped monoclinic phase, both the WO$_6$ octahedron and its nearest-neighbor VO$_6$ octahedra are distorted less. We obtain $\sigma^2 = 33.3$ deg2 for the WO$_6$ octahedron and $\sigma^2 = 28.0$ deg2 for the neighboring VO$_6$ octahedron. The effects of W doping were calculated in a supercell containing 96 atoms with formula WV$_{31}$O$_{64}$, with atomic positions optimized for both M1 and R phases. The total energy of the monoclinic phase is lower than the rutile phase, consistent with the stability of even the W-doped M1 phase at low temperature. The total calculated energy difference is 74.4 meV per W$_{1/32}$V$_{31/32}$O$_2$ unit, which is smaller than that energy difference for undoped VO$_2$. Thus, W doping stabilizes the high-temperature rutile phase relative to the low-temperature monoclinic phase, consistent with the observed reduction of transition temperatures in W-doped VO$_2$ samples.

Assuming that the change of entropy between the monoclinic and rutile phases at the transition is the same for both pristine and W-doped VO$_2$, the phase-transition temperature T_{C1} of W : VO$_2$ can be estimated as $T_{C1} = T_{C0}(\Delta E_1/\Delta E_0)$, where T_{C0} is the transition temperature of pristine VO$_2$, and ΔE_0 and ΔE_1 are the total energy differences between the M1 and R phases in the VO$_2$ and W : VO$_2$, respectively.

An estimated transition temperature of 261 K is obtained for the WV$_{31}$O$_{64}$ material using the calculated total energy differences and the experimental transition temperature of 340 K in pristine VO$_2$. The reduction of transition temperature in
FIG. 4. Effect of W dopants on VO₂ coherent phonon dynamics. Normalized transient absorption (TA) data for only the first picosecond comparing VO₂ (gray) and W:VO₂ (red) at (a) below, (b) near, and (c) just above their respective switching thresholds. Note the systematic faster damping of the oscillation for the W-doped sample. (d) Experimental phonon spectra comparing pristine (gray) and tungsten-doped (red) VO₂ samples with lattice vibrations driven by below-threshold exciting pump pulse. Data were acquired by Fourier-transforming the kinetics data of Figs. 2(b) and 2(c) with spectral slices centered at 475 nm and with a 20 nm bandwidth. (e) Calculated phonon spectra at the Γ point using a finite displacement method comparing the VO₂ (gray) and W:VO₂ (red). The principal phonon vibrations for the V-V at 6 THz (for the VO₂ unit cell) and a representative 3.7 THz W-V mode in the 3.6–4.8 THz range (for the W:VO₂ unit cell) are shown in (f) and (g), respectively. The red atom represents the tungsten dopant.

W:VO₂ is equivalent to 25 K per 1% W-dopant atom, in excellent agreement with the experimentally observed reduction of 27 K per 1% W-dopant atom [51]. Consequently, the DFT calculations suggest that the differences in the structural phase transitions of pristine vs doped VO₂ films are associated with the structural distortion and additional charges introduced by the dopant ions. These changes in the energy cost of the transition are indeed reflected in the electronic signature of the phase change, that is, in the insulator-to-metal transition.

B. Effect of doping on coherent phonon dynamics

As suggested in Sec. III, the tungsten dopants have an appreciable effect on the lattice dynamics, on both the short and longer timescales (Fig. 3). To further quantify these effects in both samples, we extract the kinetic traces of the 2D time-resolved data at around 475 nm at key pump fluences [Figs. 4(a)–4(c)]. Figure 4(d) displays the experimentally obtained frequency domain signatures of the coherent phonons, acquired via Fourier transformation of the kinetic traces. The transformed data reveal that the W-dopant modifies the phonon spectrum by softening the VO₂ phonon modes. We observe phonon softening near 6 THz, a well-known signature of the phase transition in pristine VO₂ [10], as well as an additional phonon mode near 4 THz, near the Γ point. These lower-frequency V-W vibrational modes in the W-doped VO₂, when compared to the V-V dimer vibration at 6 THz in pristine VO₂ suggest that the presence of W may lower the energy required to trigger the phase change, resulting in the rather smooth transition observed in Fig. 2(c). As the fluence is increased to near-switching threshold and above, these phonon modes from both the pristine and W:VO₂ vanish, indicating the loss of the insulating state and the subsequent onset of metallization in the rutile crystalline structure.

To determine how the tungsten dopant modifies the phonon modes of the VO₂, vibrational frequencies were calculated using the zone-centered finite-difference method (Γ point only in the Brillouin zone), so that each ion is displaced in the direction of each Cartesian coordinate, as in density functional perturbation theory (DFPT). Using this finite-displacement method to calculate the lattice vibrations of this W-doped VO₂ system in a WV₁₀₇O₂₁₆ supercell, we find several zone-centered vibrations in the range 3.6–4.8 THz involving the motion of the W atom bonded to neighboring V atoms. In this approach, the Hessian matrix and the force constants were calculated using the VASP package [45]. The PBE-GGA exchange-correlation potential [52] was used, and the electron-core interactions were treated in the projector augmented wave (PAW) method [28,46]. All the calculations
were based on a supercell including 27 unit cells (3 × 3 × 3) of the monoclinic structure. For W-VO$_2$, one V atom is replaced by W, so that the W concentration is about 0.9%. The phonon density of states was calculated by manually counting the number of states within a 0.1 THz window and plotted as a function of frequency. The curves, as shown in Fig. 4(e), are smoothed using second-order least-squares regression to compare with the experimental data [Fig. 4(d)]. The calculations capture the phonon softening near 6 THz and the broadening and low-order modes near 4 THz. Figure 4(g) depicts a representative W-V mode in the 3.6–4.8 THz range for a W:VO$_2$ unit cell. The presence of lower-order modes is typically attributed to lattice vibrations that extend to multiple unit cells, as discussed by Gervais et al. [8]. Therefore, doping the VO$_2$ lattice with tungsten has the effect of modifying the phonon density of states at those lower phonon-mode frequencies.

V. CONCLUSION

We observe that both electronic and the structural phase transitions in VO$_2$ are strongly affected by substitutional doping of tungsten atoms, at a concentration appropriate to many phase-change applications. Ultrafast laser switching into the metallic state occurs at lower fluence in W-doped VO$_2$ films, with drastic time-dependent changes across the visible-to-NIR spectrum. Moreover, the difference in coherent response between pristine and W-doped VO$_2$ films suggests that bond softening due to both the higher electron concentration and greater inertial mass alters the carrier dynamics even during the first few picoseconds. The decreased transmission observed for the W-doped film at all fluences is attributable to the excess carriers in the conduction band, resulting also in a reduced energy required to switch the film. Another reason for this reduced transmission could be due to the dopant ions that generate localized regions of R-phase symmetry even in the insulating monoclinic VO$_2$ [21].

Doping with lighter elements, such as aluminum or magnesium [53,54], can, in principle, be used not only to control the switching threshold of a PCM, but also to change the optical contrast in the insulator-to-metal transition and induce faster relaxation to the insulating state following ultrafast laser excitation. Dopants—either lighter or heavier than vanadium—can also be used to create lattice deformation in the form of strain, thus triggering the phase transition with varying switching threshold depending the nature of the strain (tensile or compressive) [55–57]. Localized introduction of dopants by ion implantation can be used to alter the optical properties of metamaterials and metasurfaces [58]. More rapid doping-induced dynamics would be appropriate for applications to silicon photonics, where optical and electrical switching of ring resonators using vanadium dioxide are already being explored [59,60].

In general, therefore, one can also expect that doping phase-change materials—with either excess electrons or holes—will continue to provide insights into phase-transition dynamics in strongly correlated materials, while simultaneously yielding many opportunities to control the properties of thin PCM films for specific applications in optoelectronics and photonics.

ACKNOWLEDGMENTS

Materials preparation and laser experiments were supported by the National Science Foundation (J.N. and R.F.H.: ECS-0801985; K.A.: OIA-1832898) and the Defense Threat Reduction Agency (K.A. and R.F.H.: HDTRA1-01-1-0047). Density functional theory (DFT) calculations were partly sponsored by the Department of Energy (Grant No. DE-FG02-09ER46554: B.W., W.L., and S.T.P.), by the National Science Foundation (Grant No. DMR-1207241: B.W., S.T.P.), and by the McMinn Endowment at Vanderbilt University (S.T.P.). This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Computations were performed at the National Energy Research Scientific Computing Center. Portions of this work were performed at the Vanderbilt Institute of Nanoscale Science and Engineering, using facilities renovated under NSF ARI-R2 DMR-0963361. The high-temperature XRD work was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. We thank Prof. Simon Wall and Prof. Raanan Tobey for helpful discussions.

Doping-Driven Electronic and Lattice … Physical Review B 102, 115148 (2020)

