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 Develop cell-based, fast-response metabolic
sensing arrays for detection and
discrimination of toxins or for use Iin drug
screening efforts.

e Use massively parallel arrays of devices with
multiple sensors and cell lines, subnanoliter
volumes, and active microfluidics for rapid
response and closed loop control of the
extracellular space!

 Massively Parallel, Multi-Phasic Cellular
Biological Activity Detector (MP2-CBAD)
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 \We do not measure the toxin itself. We are
measuring the impact of the toxin on cell
physiology by probing cell functions!

— Metabolic pathways

— Signaling pathways

— Electrical excitabllity

— Cell-to-cell communication ........




Glucose

I Glucose + 2 ADP +2NAD® - 2 Pyruvate + 2 ATP + 2 NADH
| Pyruvate + NADH > Lactate + NAD'

Pyruvate + CoA + FAD N 3 CO,+ FADH2 + GTP
+ GDP + 3 NAD" + NAD(P)' + 3 NADH + NAD(P)H

| 050,+3ADP+NADH > 3ATP+NAD'

| 050,+2ADP+FADH, > 2ATP+FAD
S  NADPHE:,
Oxidase ™.
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Presentation Notes
In metabolic networks the flow of mass and energy is the essential purpose of the machinery.


Simultaneous monitoring of multiple
metabolic signals

Characteristic response in a
conditioned environment

Characteristic responses of cellular
phenotypes to toxins

Characteristic reaction kinetics of
metabolic pathways
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Simultaneous monitoring of
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Three Spatial/Temporal
Scales for Cell-Line
Screening and
BioSignature Generation

96 and 24-well-plate cell culture

Modified Cytosensor MicroPhysiometer

Vanderbilt NanoPhysiometer
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Scales for Cell-Line
Screening and
BioSignature Generation

96 and 24-well-plate cell culture

Modified Cytosensor MicroPhysiometer

Vanderbilt NanoPhysiometer



VI/ sRE. The Glc/Lac/CO, well- (:P"BBAII
plate protocol

Load wells with test media
Seal each well with plu Sample for glucose and lactate
Pug concentrations at t=0 and t=6 hr. Sample for total CO,
Four wells of each agent Perform enzymatic assay on separate | | concentration. Perform
concentration 96-well plates. enzymatic assay on
separate 96-well plate.
Pre-incubation for adherent \
cell lines to attach to well bottom DN
- Plugged wells N

N -2 Ofime ()~ 4 b

Changes in concentrations of glucose, lactate, and carbon dioxide (CO, plus
bicarbonate) are used to calculate the respective metabolic rates
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Presentation Notes
I’m only discussing the newest protocol.
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Gl Lac

4
Uy Iqlac Given measured rates, we
calculate the least-square

|
Lac values for the unknown fluxes.
Vi, vl ~ glycolysis
v20 ~ TCA cycle

v31 and v32 ~ oxidative
V20 -
\ phosphorylation

gATP ~ energy production

v
1
iqATp O, Balances on pathway intermediates:
ATP generated p N ( ~
from energy pathways Gle (1000-100 0 0 O
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2.ex NADH [0 0 0 0 2-14 -1 0 O
FADH2|0 0 0 0 0 01 0O -1 0
Balances for NADH and FADH, not shown
2 " ATP (0000201 25 15 -1
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Presentation Notes
The solution method used to solve the overdetermined system of 8 equations provides least-square estimates for all non-measured fluxes (shown in black) as well as new estimates for measured rates (shown in red). The new estimates for the measured rates are adjusted weighted according to their error bars. For example, if the glucose rate was good to +/- 10%, then the new flux estimate for q-glc could be +/- 10% in order to achieve a better fit between measurements and the model.
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Presentation Notes
All three plots are just examples of how we can use the fluxes to see differences between toxin action.

LHS: Plots of lactate:glucose based on the measured rates for lactate and glucose (dotted lines) show more variation (and less of a trend) than those based on estimated fluxes (solid lines). 

RHS-top: ATP estimated from the network. The actual ATP production is not known. These plots belie what the cell is trying to do in response to the challenge. For example, when ATP production is short-circuited by DNP (a mitochondrial uncoupler), the cell consumes more glucose and produces more lactate and CO2 to (presumably) maintain its intracellular ATP setpoint.
RHS-bottom: Pyruvate node defined as pyruvate generated from glycolysis (flux v1 x 2) divided by pyruvate going to TCA cycle (v20).
Example explanation: Though AA blocks oxidative phosphorylation, fibroblasts exposed to AA maintain ATP production by shifting to glycolysis.
Results from MFA agree with the qualitative understanding of the toxin mechanisms.
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Preliminary screening can be accomplished using the 90-
minute acidification well-plate assay:

— Establish working ranges for toxins on cell lines

— Assess cytotoxicity upon 90-minute exposures

Metabolic changes can be quantified using a composite
protocol where each of 400-ul mammalian cell cultures on
a 24-well plate provides glucose, lactate, and CO2
metabolic rates:

— Plug design allows for monitoring of net CO2 produced

— Specifying 3 metabolic rates provides an overdetermined system of
linear equations for the metabolic network

« Each well can be tested for consistency of measurements with the model
(data error exclusion)

 MFA calculations results in least-square estimates for 10 fluxes (noise
reduction)

Future development of oxygen well-plate assay for
oxygen metabolic rates:

— Provide alternate fast (90-minute) screen for toxin concentration range
— Direct assessment of toxin impact on oxidative phosphorylation
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Scales for Cell-Line
Screening and
BioSignature Generation

96 and 24-well-plate cell culture

Modified Cytosensor MicroPhysiometer

Vanderbilt NanoPhysiometer
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Cell Line Selection, Cell Conditioning,
Sensor Array Optimization

MicroPhysiometer:
Modified sensor head

Schematic drawing of
modified sensor head for
(.. the microliter Molecular
Devices Cytosensor
microphysiometer

Four new platinum
electrodes for oxygen,
glucose, lactate, ORP
measurements
Existing Cytosensor
head
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min -90** 0 3|O 3|6 60

equilibration +/- toxin

\

Muscarine 10 uM

Pump measurement settings on a 2 minute cycling time 2 sec delay 30 sec measurement

Cell Lines:

CRL 2254 (AML12 ) Mouse liver cell
CRL-1981 M3WT4 Chinese Hamster Ovary
CRL-10225 Fibroblast
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Fibroblasts in NaF
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Acidification
Percent of Control, Normalized
(-u Volts/sec)
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First data point is the first data measurement taken after beginning infusion of drug.
All data expressed relative to normalized segment of data over the 10 minutes
immediately prior to drug infusion. Muscarine injected at 10uM.
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VI =R . .
/ BioSignature Generation:
Cell Line Selection, Cell Conditioning,
Sensor Array Optimization

MicroPhysiometer:
Modified sensor head

Schematic drawing of
modified sensor head for
(.. the microliter Molecular
Devices Cytosensor
microphysiometer

Four new platinum
electrodes for oxygen,
glucose, lactate, ORP
measurements
Existing Cytosensor
head




Fabrication of LOx electrode
LOx and GOX LOx/GIutIZigI()oISeI)Lyde/BSA Deposit 0.5% Nafion
Sensor Head Electrodes film ,

Sensor Head Electrode ' “ “

Insert Pt electrode
into sensor head Seal with epoxy/polish

Y
.I. ‘ “ GOx electrode
Deposit

GOx/Glutaraldehyde/BSA  peposit 5% Nafion
film

“ElR-ip



VI/iﬁ}RE Platinum Electrodes In _@pz.cnm]
d Modified CytoSensor Head

510 um diameter
— Glucose
— Lactate
— pH
— Reference
127 um diameter
— Oxygen
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the Microphysiometer (No Cells)
Charge vs Glucose Charge vs Lactate
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0.1 and 0.5 mM DNP, CHO cells
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Current/ 1e-8A

_3135 R

—4I]{ .

Data Analysis: Integration
below baseline

((Mp-cBAD

Cellular Lactate Response to 20uM DNP in RPMI
LOx/BSA/TritonX electrode (Raw data)
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cpr DOseresponse with 0.1, 0.5,
and 1 mM DNP
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Screening and
BioSignhature Generation

96 and 24-well-plate cell culture

Modified Cytosensor MicroPhysiometer

Vanderbilt NanoPhysiometer



e Both gain and bandwidth contribute
to clearer biosignatures and hence
Improved discrimination

Monitor single-cell metabolic physiology
In real time In sub-nanoliter volumes
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Expanded view of a
cell trap with toxin
delivery and versatile
custom electrodes

Vacuum

Drain for
toxin channel

N

((MP-cBAD

Stimulating
electrode (5u)

Working
electrode (5um)

Stimulating
electrode (5um)
Counter
electrode (25um)
Reference
electrode (25um)

Toxin cm\

<7L Media/

cell delivery

Cover for
SiOx coating

Cell

<
)/

delivery/disposal

Single fibroblast cell (20um diam)
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NanoPhysiometer llI:
Staining of hybridoma cells in
the cell trap to demonstrate

toxin delivery.

After Stain
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Current (ampres)
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Oxygen measurements of single cells in the
NanoPhysiometer cell trap. Pulse voltametry was used
to monitor oxygen of a single hybridoma cell in a (15
um)?3 sensing volume The measurement was repeated
five times and mean O, profiles were plotted for
sensing volumes with and without a cell present.

Oxygen Consumption by Sensing Electrode

((MP-cBAD

Oxygen Consumption Rate
Approximation for Single Cell:

I= 2nnFADC/{w In(64Dt/w?) }
Electrochemical Methods 2" Edition, pg. 175

n=4 D =3x10°cm?/s
=15 um t =20 sec
W=5pum Al=1.4nA

then AC = 154 uM

Rate Determination:

Rate = AC * Volume / Time (40 sec)
Time = 20 sec before run + 20 sec run
Rate = 4.6 e-11 mmole/cell/hour

= 0.5 fM/cell/hour



Detect fast, direct response rather than slow
secondary responses

Cell can serve as its own control

Calibration of each cell with standard chemical
stimuli prior to agent exposure

itrate toxin exposure to avoid desensitization
and other suprathreshold effects

Multiple, parallel assays for statistical reliability




 Well Plate Assays — metabolic screening of cell lines

— Completed development of a 24-well-plate protocol with which to
determine glucose, lactate, and CO2 metabolic rates from each well
culture. Demonstrated use of metabolic flux analysis to improve
metabolic screening signature analysis.

« Microphysiometer — expanded capabilities, dose response

— Fabricated modified Cytosensor heads for use at Vanderbilt and
ECBC/SSBCOM, with sensing capabilities for four analytes, interfaced
them to multichannel potentiostats, and demonstrated simultaneous
measurements of oxygen, pH, glucose, and lactate in microliter
volumes.

— Generated and analyzed multiparameter metabolic biosignatures for
antimycin A, botulism toxin, cholera, cyanide, deoxyglucose, DNP,
DFP, NaF, and Ricin.

« NanoPhysiometer — proof of concept

— Fabricated completely at Vanderbilt PDMS BioMEMS devices with
planar electrochemicai sensors, nanoliter volumes, and external control

hardware
— Measured the oxygen consumption of a single hybridoma cell
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Threat Mechanisms
Detection Schemes

A Deliverable under DARPA/ONR Contract
N66001-01-C-8064
High-Content Toxicology Screening Using
Massively Parallel, Multi-Phasic Cellular
Biological Activity Detectors MP2-CBAD

Don Berry
Vanderbilt Institute for Integrative Biosystems Research and Education
Owen MeGuinness
Department of Molecular Physiology and Biophysics
Vanderbilt University
Nashville, TN

Threat List Analysig Version 2.1
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1. Biological Agents a. Biotoxins — Con't

Microcystms

“Cyanobacterial toxing; egpecially the microcysting (MCYST), hepatocyte damage by inhibiting protein
phosgphatage 2A, resulting in hyperphosphorylation of cytoskeletal proteins.”[McDermott CM, Nho CW,
Howard W, Holton B, Toxicon 36: (12) 1981-1996 1998]

Since Protein phogphatase 2A (PP2A) plays a central role i esgential phogphorylation-dependent signal
transduction pathways a test protocol can be generated that exposes cells to microcyting and see a PP2A
specific protection. J Pharmacol Exp Ther 1997 Mar.280(3):1152-8

Cholera Toxin

All straing of V cholerae elaborate the same enterotoxin, a protein molecule with a molecular weight ot
84,000 daltons. The entire clinical syndrome 18 canged by the action of the toxin on the intestinal epithelial
cell. Cholera toxin causes active secretion of chloride and blocks sodium absorption in the small intestine
with the colon being relatively msensitive to the toxin. The large volume of fluid produced in the upper
mtestine overwhelms the capacity of the lower mtestine to absorb. [Biological Wartare agents, Daniel J.
Dire, MD. http:/~swww.emedicine. com/emerg/topic853.htm] It activates Gg and thus inhubit glucose uptake.
Inhibitors (e.g. H89 ) of adenyl cyclase will protect against effects of cholera. It activated calcium entry into
neuroblastoma cells J Neurosci Res 2002 Sep 1.69(5):669-80

Neuroblastoma and hepatocyte cell lines will be very effective and will produce robust inhibition of glucose
uptake. In addition cholera toxin must be transported into the cell via a clathrin-independent pathway to
exert its eftect. Depletion of cholesterol from the cells prior to exposure to the toxin to demonstrate would
delineate that internalization is required for the toxin to inhibit glucose uptalke.

Threat List Analysig Version 2.1
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 Well Plate Assays

— Use the acidification, O2, and glucose/lactate/CO2 protocols to
optimize test conditions and screen additional cell lines for improved
biosignature generation and evaluation.

 Microphysiometer

— Expand dose response database for CBW agents and cell lines at VU
and ECBC. Devise data extraction algorithms.

— Evaluate sensor performance: sensitivity, stability, interaction.
« NanoPhysiometer

— Implement single wells with multiple electrochemical sensors.

— Build integrated system comprised of on-chip wells, channels, valves,
and pumps.



e Additional orthogonal sensors IR

—_— Thermal Rigid membrane, 0.6 um thick
. Optlcal Thin-Film Thermopile
_ EIeCtrlcal | II;Ii)::porCe:ZI;rimeter

. b view
— Mechanical potiomview

e Advanced metabolic and sig

analysis f

)

|
 Instrumented model organisins (c. elegans)



Predator-prey activity analyzer: bacteria and protozoa
In bioremediation

Natural, genetically engineered, and synthetic ion
channels as biosensors

and other proprietary cellular instrumentation
systems
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Physics
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