

Vacuum Pair Production/Annihilation and Cardiac String Dynamics

John P. Wikswo

Living State Physics Group

Departments of Physics and Astronomy, Molecular Physiology & Biophysics, and Biomedical Engineering

Vanderbilt Institute for Integrative Biosystems Research and Education

Vanderbilt University

Aspen Center for Physics, August 22, 2002

Acknowledgements

- Rubin Aliev
- Mark Bray
- Elizabeth Cherry
- Deborah Echt
- Flavio Fenton
- Rick Gray
- Peter Hunter
- Alain Karma
- Mark Lin
- Neils Otani
- Arkardy Pertsov
- Nathalie Virag
- Jim Weiss
- And many others

Courtesy of Peter Hunter, Auckland

Where are the heart strings, and who is pulling them?

- The normal heart has none
- The presence of one string is serious
- The presence of several for a very few minutes is fatal

flavio_rabbit_vf.avi

Outline

VIJBRE

- The heart is a ...
- Cardiac fibrillation
- Spiral waves in the heart
 - Two dimensions Spiral waves
 - Three dimensions Scroll waves
- Phase plane analysis
- Singularity identification
 - Simple reentry
 - Fibrillation
- Singularity interactions
 - Attraction vs repulsion versus oscillation
 - Annihilation
 - Creation
- What is needed?
 - Interaction potential
 - String creation operator

The Heart is a...

- Self-assembling,
- Biochemically powered,
- Electrically activated,
- Electrically non-linear,
- Pressure- and volume-regulated,
- Two-stage,
- Tandem,
- Mechanical pump
- With a mean time-to-failure of approximately two billion cycles.

The heart is ...

electrically activated ...

From: The Ciba Collection of Medical Illustrations: Heart, F. H. Netter, 1978

Courtesy of Peter Hunter, Auckland

normalbsm.mpg

The heart is an ...

• Electrically activated,

TA WAVE - ATRIAL REPOLARIZATION MAY OCCUR

PR INTERVAL - ATRIO-VENTRICULAR

CONDUCTION TIME 0.12-0.22s

QRS SEGMENT - VENTRICULAR DEPOLARIZATION

O.1s MAX

T WAVE - VENTRICULAR REPOLARIZATION

ST SEGMENT - ISO ELECTRIC

QT INTERVAL -

Mechanical pump

50

BEATS/min

The Normal Heart Beat

Courtesy of Rick Gray and CRML, U. Alabama Birmingham

Outline

- Cardiac fibrillation
- Spiral waves in the heart
 - Two dimensions Spiral waves
 - Three dimensions Scroll waves
- Phase plane analysis
- Singularity identification
 - Simple reentry
 - Fibrillation
- Singularity interactions
 - Attraction vs repulsion versus oscillation
 - Annihilation
 - Creation
- What is needed?
 - Interaction potential
 - String creation operator

The heart is an electrically activated mechanical pump

...with a mean time-to-failure of approximately two billion cycles....

Normal

Tachycardia

Fibrillation

Defibrillation

Induction of Fibrillation

Courtesy of Rick Gray and CRML, U. Alabama Birmingham

Termination of Fibrillation

Courtesy of Rick Gray and CRML, U. Alabama Birmingham

Outline

- The heart is a ...
- Cardiac fibrillation
- Spiral waves in the heart
 - Two dimensions Spiral waves
 - Three dimensions Scroll waves
- Phase plane analysis
- Singularity identification
 - Simple reentry
 - Fibrillation
- Singularity interactions
 - Attraction vs repulsion versus oscillation
 - Annihilation
 - Creation
- What is needed?
 - Interaction potential
 - String creation operator

Spiral and Scroll Waves in Nature

- A generic property of excitable media
- Have been shown to occur in
 - -Circulating waves of bioelectric activity in cardiac and retinal tissue
 - -Autocatalytic chemical reactions, such as Belousov-Zhabotinsky reaction (BZ)
 - -cAMP waves in slime mold *Dictyostelium discoideum*
 - -Intracellular calcium release in oocytes
 - -Oxidation of CO on crystal surfaces in ultrahigh vacuum conditions
- Cardiac fibrillation involves multiple scroll waves in 3-D

PHYSICS TODAY

IUGUST 1996 PART 1

Cardiac fibrillation occurs at the spatial scale of the entire heart, and involves multiple, interacting spiral and/or scroll waves!

DYNAMICS OF CARDIAC ARRHYTHMIAS

Physics Today and Leon Glass, Montreal

Transmural versus intramural scroll VI/I waves in reentrant arrhythmias and fibrillation

Transmural

Intramural

- Transmural waves can exist in 2-D (thin) or 3-D (thick)
- Intramural waves require ~1 cm wall thickness

Transition from Normal Rhythm to Ventricular Tachycardia to Ventricular Fibrillation

Single spiral wave = Tachycardia Multiple spiral waves = Fibrillation = SCD

Movies courtesy of Flavio Fenton

Initiation of Spiral Wave Reentry

S1-S2 crossedfield stimulation

Singular Point

Contour S*

A "Simple" Spiral Wave

The nature of the spiral is set by the non-linear properties of the excitable medium

- -Linear core
- Epicycloidal meander
- -Circular core

Nonlinear Properties Determine VI/BRE the Trajectories

Six Phenotypes

- Circular
- Epicycloidal
- Cycloid
- Hypercycloidal
- Hypermeander
- Linear core
- Winfree, Krinsky, Barkley, Efimov, Jalife, Pertsov, Gray, Roth, Fenton, Garfinkel, Chen ...

Courtesy of Flavio Fenton

Non-linear dynamics of <u>reentry</u>, fibrillation, and defibrillation

- Reentry -- Self-sustained excitation due to propagating activation wave fronts in the heart that continue to re-excite different regions of tissue rather than terminating after a single excitation
- <u>Anatomical reentry</u> -- activation wave fronts that travel in one direction around an anatomical obstacle
- <u>Functional reentry</u> -- activation circulate around a dynamical phase singularity

Spiral Wave and Figure-of-Eight Reentry

- Spiral Wave:
 - S1 vert line
 - S2 horiz line
- Figure-of-Eight
 - S1 vert line
 - S2 point

TWO SINGULARITIES

SPIRAL WAVE

FIGURE-OF-EIGHT

Spiral Wave,

Figure-of-Eight, and Quatrefoil Reentry

• Spiral Wave (A)

- S1 vertical line
- S2 horizontal line
- One singularity (plus boundary)

• Figure-of-Eight (B)

- S1 vertical line
- S2 point
- Two singularities

• Quatrefoil (C & D)

- Anisotropic cable
- S1 point
- S2 point
- Cathodal (C) or anodal (D) have opposite rotations
- Four singularities

SF Lin, BJ Roth, and JP Wikswo. J. Cardiovasc. Electrophysiol. 10(4): 574-586, 1999

Outline

- The heart is a ...
- Cardiac fibrillation
- Spiral waves in the heart
 - Two dimensions Spiral waves
 - Three dimensions Scroll waves
- Phase plane analysis
- Singularity identification
 - Simple reentry
 - Fibrillation
- Singularity interactions
 - Attraction vs repulsion versus oscillation
 - Annihilation
 - Creation
- What is needed?
 - Interaction potential
 - String creation operator

Transform into Phase Space

- •<u>The problem</u>: a given voltage can either be rising or falling
- The solution: represent the cardiac action potential in terms of "phase" in the cardiac cycle:
 - $-0, 1, 2, 3 \dots$
 - $-1\%, 2\%, 3\%, 3\%, 5\%, \dots$
 - $-0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}, 20^{\circ}, 25^{\circ}, \dots$
- •One definition of phase (of many):

$$\phi(x, y, t) = \tan^{-1} \left[\frac{V_m(x, y, t)}{dV_m(x, y, t) / dt} \right]$$

Pictures by Mark Bray

From Voltage to Phase Space

M-A Bray, S-F Lin, RR Aliev, BJ Roth, and JP Wikswo, *J. Cardiovasc. Electrophysiol.* 12(6): 716-722, 2001.

Outline

- The heart is a ...
- Cardiac fibrillation
- Spiral waves in the heart
 - Two dimensions Spiral waves
 - Three dimensions Scroll waves
- Phase plane analysis
- Singularity identification
 - Simple reentry
 - Fibrillation
- Singularity interactions
 - Attraction vs repulsion versus oscillation
 - Annihilation
 - Creation
- What is needed?
 - Interaction potential
 - String creation operator

Why look for strings?

- •Movies of the surface potentials are complicated
- •It is not clear how much of the information is needed
- Model based upon
 - -R.R. Aliev and A.V. Panfilov, A. V., *Chaos, Solitons, & Fractals*, 7(3): 293-301 (1996)
 - -Gray, R. A. and Jalife, J., *Chaos*, 8(1): 65-78 (1998)
- Movies by Mark Bray

Wavefronts are Better

- The wavefronts are better
- Require description of the dynamics of the entire system

Strings Alone May Be Best

- Surface singularities are simpler
- Filaments (strings) are the best
- Do they interact in a manner that can allow us to ignore the rest of the problem?
- HOW DO WE FIND THEM??

Local Phase and the Wave Vector \vec{k}

• The spatial gradient of the phase ϕ is the wave vector \vec{k}

$$\vec{k} = -\nabla \phi(x, y)$$

Topological Charge \vec{k}

$$n_t \equiv rac{1}{2\pi} \oint_c
abla \phi \cdot \vec{d\ell} \; ,$$

$$n_t \equiv \frac{-1}{2\pi} \oint_c \vec{k} \cdot \vec{d\ell}$$
 ,

Phase and Topological Charge VI/BRE

• Curl k is proportional to the topological charge!

$$\hat{z} \cdot [\nabla \times \vec{k}(\vec{x})] = \frac{\partial k_y}{\partial x} - \frac{\partial k_x}{\partial y} = \lim_{\Delta S \to 0} \frac{1}{\Delta S} \iint_c \vec{k}(\vec{r}) \cdot d\vec{\ell}$$

- It can be shown that the differential curl evaluates as exactly zero, except at the singularity, where it is undefined.
- At the singularity, the line integral around the singularity must be used directly to find the topological charge.

"Use of Topological Charge to Determine Filament Location in a Numerical Model of Scroll Wave Activity," M.-A. Bray and J.P. Wikswo, Jr., IEEE Trans BME, in press

Phase Singularities in Cardiac VI/BRE Reentry

Phase (ϕ) plot

 $Curl\ k = Curl\ (\nabla \phi)$

The phase singularities can be identified by computing the curl of the gradient of the phase distribution

Topological VI/BRE Charge

$$n_t \equiv rac{1}{2\pi} \oint_c
abla \phi \cdot \vec{d\ell} \; ,$$

$$n_t \equiv \frac{1}{2\pi} \oint_c \vec{k} \cdot \vec{d\ell} \ ,$$

- Phase(x,y)
- Topological charge n_t is zero about any closed path that does not encircle a phase singularity
- n_t is +1 or -1 for a path that encircles a singularity with a single arm
- Topological charge is conserved, *i.e.*, singularities are created and destroyed in pairs.

Singularity Motion During Spiral VIJBRE Wave Breakup

Filaments in Three Dimensions

What looks like a figure-of-eight reentrant wave from the surface...

...is actually a 3-D scroll wave in the underlying myocardium with a filament connecting the two singularities

• Filaments are the 3-D analogue of the 2-D phase singularity

Topological charge

- Curl k may be approximated by
 - 1) a differential operator, or
 - 2) as a discretized contour interval that is in fact a convolution operation of an image with two Nabla windows

Filaments in Three Dimensions

• Filaments are the 3-D analogue of the 2-D phase singularity

bz_scroll_ring_surface.avi
bz_scroll_ring_filament_plus_wavefront.avi

3-D Filaments VI/BRE

Because curl is a threedimensional vector operator, this convolution approach can can be extended readily to 3-D in order to visualize scroll wave filaments

String Dynamics

Strings with positive line tension shrink (Paniflov, Rudenko and Krinsky, Biophysics, 31: 926 (1986))

bz scroll wave stable surface fps60.avi

bz scroll wave stable filament fps60.avi

bz scroll ring (filament).avi

String Dynamics

- Strings with negative line tension grow and buckle (see V.N. Biktashev, A.V. Holden, and H. Zhang. *Phil. Trans. Royal Soc. London, Series A* 347: 611-630, 1994)
- If they touch a surface, a pair of singularities is produced
- Topological charge is conserved

Movie Courtesy of Flavio Fenton

A Little Negative Line Tension VI/BRE

A Lot of Negative Line Tension VI/BRE

fhnplus_scroll_ring_k40_filament_plus_wavefront.avi fhnplus_scroll_ring_k40_filament.avi

Mark Bray

Outline

- The heart is a ...
- Cardiac fibrillation
- Spiral waves in the heart
 - Two dimensions Spiral waves
 - Three dimensions Scroll waves
- Phase plane analysis
- Singularity identification
 - Simple reentry
 - Fibrillation
- Singularity interactions
 - Attraction vs repulsion versus oscillation
 - Annihilation
 - Creation
- What is needed?
 - Interaction potential
 - String creation operator

Quatrefoil Reentry

- Follows repeated stimuli applied at a single site
- Has been used to demonstrate the importance of unequal bidomain anisotropies in cardiac electrodynamics
- Provides a reproducible, controlled system for study of the interactions of phase singularities and their accompanying filaments

Cathode break

Anode break

Quatrefoil Reentry

MA Bray, SF Lin, RR Aliev, BJ Roth, and JP Wikswo, J.P., "Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue.," *J Cardiovasc Electrophys*, vol. 12, no. 6, pp. 716-722, 2001.

Quatrefoil Reentry

• We replicate the experimentally observed quatrefoil reentry configuration using a simulated pair of adjacent circular filaments (scroll rings) oriented along their symmetry axes with varying initial radii and separation distances

Reaction-Diffusion System

• We use a two-variable model of the Belousov-Zhabotinsky (BZ) reaction using the Field-Koros-Noyes formulation

$$\frac{dv}{d\tau} = \frac{1}{\varepsilon} \left[v(1-v) - \left(2q\alpha \frac{w}{1-w} + \beta \right) \frac{v-\mu}{v+\mu} \right] + \nabla^2 v$$

$$\frac{dw}{d\tau} = x - \alpha \frac{w}{1-w} + \delta \nabla^2 w$$

where v is the bromous acid concentration, w is the relative ferroin concentration, and $\delta = D_w/D_v$ ($\delta = 1$ in this case)

• For
$$\delta = 1$$
, $\frac{d(R^2)}{dt} = -2D$

• With this BZ formulation, a single ring shrinks with a relative absence of translational drift; permits us to observe interaction without large single ring dynamics

Methodology

- Modeled 3-D system using an axisymmetric cylindrical coordinate system (z, ρ, θ) , such that all results are independent of angle $\theta \rightarrow$ Need only to examine 2-D (z, ρ) plane
- Started rings at initial separation (Z_0) and initial radius (R_0) and examined life-time (T_L) and motion in (z,ρ) plane
- Simulated cathode and anode break with appropriate initial conditions

Initial Conditions

Experimental

Numerical

Numerical – Wave Fronts

Anode break

Cathode

break

Z₀
R₀

Simulated Singularity Interactions

- Start with a pair of vortex rings of fixed diameter and positive line tension
- Measure decay time as a function of separation and initial size

BZ: Anode break

BZ: Cathode break

Cathodal Break

- 5: Free decay and selfannihilation per Paniflov, Rudenko and Krinsky, Biophysics, 31: 926 (1986)
- 4: Repulsion per Elphick and Meron, Physica D, 53: 385 (1991)
- 1: Enhanced decay, attraction, and mutual annihilation per Elphick and Meron, Physica D, 53: 385 (1991)

M Bray and J. Wikswo, in preparation

Self-annihilation by shrinkage

Cathode break movie

Cathodal Break Trajectories

Anodal Break

- 4: Free decay and selfannihilation Paniflov, Rudenko and Krinsky, Biophysics, 31: 926 (1986)
- 1: Enhanced decay, attraction, and mutual annihilation per per Elphick and Meron, Physica D, 53: 385 (1991)
- 2: Extended lifetime
- 3: Repulsion per per Elphick and Meron, Physica D, 53: 385 (1991) Mark Bray

Self-annihilation by shrinkagec

Anode break movie

Anodal Break Trajectories

Initial Velocity = Force

Outline

- The heart is a ...
- Cardiac fibrillation
- Spiral waves in the heart
 - Two dimensions Spiral waves
 - Three dimensions Scroll waves
- Phase plane analysis
- Singularity identification
 - Simple reentry
 - Fibrillation
- Singularity interactions
 - Attraction vs repulsion versus oscillation
 - Annihilation
 - Creation
- What is needed?
 - Interaction potential
 - String creation operator

Courtesy of Jim Weiss

String Creation and Annihilation: **Positive Line Tension with Fiber Rotation**

F. Fenton and A. Karma Chaos 8 (1):20-47, 1998

Vacuum loop Loop pinch-off creation/annihilation

Vacuum loop creation and coupling

Wavebreak = Vacuum Creation^{VI}/_{BRE}

Courtesy of Nathalie Virag, Medtronic

- Wave break occurs when the leading edge of a wave runs into the tail of a preceding wave
- Wavebreaks create filaments which create reentrant activation

Future Questions

- For both cases, what parameters determine attractive versus repulsive behavior? Parameter gradients?
- Can a kinematic relationship be derived for the scroll ring interactions?
 - Is the effective mass constant or not, since it is a dissipative system?
 - Can the ring interaction be described by a point-topoint potential, and if so, are there obvious centers of action?
- In a field model, how do you introduce string creation from the vacuum?

Acknowledgements

- Rubin Aliev
- Mark Bray
- Elizabeth Cherry
- Deborah Echt
- Flavio Fenton
- Rick Gray
- Peter Hunter
- Alain Karma
- Mark Lin
- Neils Otani
- Arkardy Pertsov
- Nathalie Virag
- Jim Weiss
- And many others

72

fhnplus_scroll_wave_break_4panel.avi

