
LIVING STATE PHYSICS GROUP 
DEPARTMENT OF PHYSICS AND ASTRONOMY,  VANDERBILT UNIVERSITY 

TL179 BMES 2000 1 

The Challenges of Spatial Scales in 
Modeling and Understanding Cardiac 

Fibrillation 
 

John P. Wikswo, Jr. 
Vanderbilt University 



LIVING STATE PHYSICS GROUP 
DEPARTMENT OF PHYSICS AND ASTRONOMY,  VANDERBILT UNIVERSITY 

TL179 BMES 2000 2 

Theme 
• The abrupt termination of the Cardiac Arrhythmia 

Suppression Trial (CAST) was the result of fatal drug 
effects that were not anticipated by model or experiment 

• There is a rapidly growing knowledge base on the 
structure and function of membrane ion channels 

• What is involved in providing a stronger numerical 
connection between the ion channel and the 
electrophysiology of the entire heart? 

• Models of the electrical activity of the heart during 
cardiac fibrillation provide serve as a valuable example 
of just how hard this might be. 
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Will a particular antiarrhythmic drug alter either the 
fibrillation or defibrillation thresholds?  

• Or… Why I use rabbit hearts as analog computers. 

Courtesy of Debra Echt 
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The Ultimate Forward Problem: 
 

How can we use knowledge of the 
protein sequence for voltage-gated ion 

channels to predict numerically the 
electrocardiogram during a long 

episode of fibrillation? 
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Leon Glass 

The characteristics 
of cardiac fibrillation 
are set by the spatial 
scale of the entire 
heart 
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10 nanometers: Ion channels are in control 
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1 nanometer: Pore in a gated ion channel 

10-9 meters 

104 meters 

The Ultimate Device 
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Two extremes: Models of cardiac activity 

Einthoven triangle 
and the cardiac 
dipole moment 
     1 m, 10 sec 
 

 Channel kinetics 
from patch clamp           
10 nm, 1-10 nsec 
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          The problem of scales:  
The characteristic lengths and times in biological systems 
span MANY orders of magnitude. 

• An ion channel: 10 nm ~ 1 channel/mm2 

• Cardiac cell: 150 mm x 15 mm x 15 mm 
500 to 30,000 channels per cell depending upon cell type 

• The heart: 10 cm 
4 x 109 cells 
2 x 1014 channels 

• The body: 1 m 
• Ratio of spatial scales: 108 in distance, 1024 in volume 
• Channels change in 1 - 10 ns, fibrillation time scale ~10 s 
• Ratio of temporal scales: 109 in time 
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The Ultimate Forward Problem: 
•Assume gated ion-channel protein sequence: 1 nm 
•Assume that you can compute  

– Protein structure: 1 – 10 nm 
– Protein kinetics: 1 ns – 100 ms 
– Channel response to antiarrhythmic drugs: 10 nm, 1 ns – 100 ms 
– Cellular, tissue and cardiac electrodynamics: 10 mm, 10 ms 
– Electrocardiogram: 1 m, 10 s 
– Fibrillation and defibrillation thresholds: 1 m, 10 s 

•What will this involve? 
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Start with the DNA sequence for a potassium 
channel… 

Courtesy of Dirk Schneiders 
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Assemble the proteins 
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And we solve the protein folding 
problem… 
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Insert the folded proteins into the membrane 

Voltage-gated Na+ channel 

Voltage-gated Ca++ channel 

Voltage-gated K+ channel 
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Compute how 
the protein 

conformation 
depends upon 

voltage or ligand 
binding 
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See which 
drugs block 
the channel 
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Compute the 
channel 

kinetics to 
determine the 

switching 
behavior 

Courtesy of Dirk Schneiders 
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Compute the time-dependent channel 
conductance 

Wilders and Jongsma, Biophys. J., 65: 2601-2613 (1993) 
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Stochastically 
activate the 

channels 



Describe the channel currents in terms of a Hodgkin-Huxley-like 
model such as Luo-Rudy I or II  

Courtesy of Dan Roden 

TL179 BMES 2000 20 
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Sprinkle the 
channels and their 

currents onto a 
family of virtual 

cardiac cells 
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Divide each 
cell into a 

numerically 
stable subunit 
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Assemble 
the cells into 
small regions 

of cardiac 
tissue 
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Include the three-dimensional cable properties of the 
anisotropic cardiac syncytium 

Unit 
Block 

Intracellular 

Non-linear 
membrane 

Extracellular 



LIVING STATE PHYSICS GROUP 
DEPARTMENT OF PHYSICS AND ASTRONOMY,  VANDERBILT UNIVERSITY 

TL179 BMES 2000 25 
s01438 

Assemble the regions into a whole heart 
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Compute 10 seconds of fibrillation … 

Courtesy of Debra Echt 

Traces of 
experimental data 
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The computer 
runs forever….  

Look at the 
model 

 81 free parameters 
for each volume 
element in the 
model 
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• Divide each cardiac cell into 10 segments:  
           4 x 1010 segments/heart 
• At least 50 currents and other variables/segment 
           2 x 1012 variables/heart 
• 5 µs/timestep:  2 x 106 timesteps/10s of fibrillation 
• 4 x 1018  equations to solve …  micromoles …. 
• 46,000 years on a 25 MFLOP workstation 
• 10 years on 1200 100 MFLOP workstations 
• 1 year on a 1 TFLOP workstation 
• At 100 bytes/segment, 4 Tbytes of  memory or disk to     store the 
model    
Cherry, Greenside, Henriquez PRL 2/7/00: Whole-heart, minimal adaptive mesh LR1 estimated 10-5 real 
time with a 533 MHz DEC a; 70x increase with a 100-parallel computer. 

The Problem of Scale: Numerical Models 
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Discussion 
• Whole-heart cardiac models involve brute-force 

solution of partial differential equations, using 
either HH-type models (LR, etc), or eikonal 
equations 

• At present, there are few if any numerical, 
theoretical, or analytic connections between the 
molecular description of the channel and either  
HH-type or eikonal models 
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Solutions to the Ultimate Forward Problem 
• Develop efficient multiscale/mesoscale models to span 

the full range of space and time 
– Molecular dynamics vs. statistical mechanics vs. 

thermodynamics 
– Eikonal equations for the wave front properties 
– Direct physiological determination of eikonal equation 

parameters 
• An isolated rabbit heart: a self-assembling, 

multivarible, multistate, massively parallel, non-
linear analog computer 
– Solves ~1017  equations/second at $30/hour 
– Requires improved programming techniques 
– Requires improved readout of the answer 
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Characterizing the Cardiac State 
What do you do with all the data? 

 • Ontological failure:  “The phenomena you are 
interested in requires elements or laws outside of 
the set you have been given.” 

• Epistimological Failure: “You have enough 
elements and the laws do apply, but you yourself 
cannot understand the explanation that they 
provide.” 
 D Bray, TIBS 22, pp 325-326 (1997) 
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Visualizing Fibrillation 
Vm         Phase 
 
 
 
Variance   Curl 

Vm_Var_Phase_Curl.mp4 

http://www.vanderbilt.edu/lsp/talks/multimedia/Vm_Var_Phase_Curl.mp4
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And the Third Dimension… 

• Transmural waves can exist in 2-D (thin) or 3-D (thick) 
• Intramural waves require ~1 cm wall thickness 

Arkady Pertsov, Syracuse 

Spiral  
vs 

Scroll  
Waves 
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Understanding Cardiac Dynamics  
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Vm & Ca++  
vs. 

Methoxyverapamil 
(D-600) 

Vm_Ca.mp4 

http://www.vanderbilt.edu/lsp/talks/multimedia/Vm_Ca.mp4
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Questions 
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