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The Challenges of Spatial Scales In
Modeling and Understanding Cardiac
Fibrillation

John P. Wikswo, Jr.
Vanderbilt University
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Theme

e The abrupt termination of the Cardiac Arrhythmia
Suppression Trial (CAST) was the result of fatal drug
effects that were not anticipated by model or experiment

e There Is a rapidly growing knowledge base on the
structure and function of membrane 1on channels

e What is involved in providing a stronger numerical
connection between the ion channel and the
electrophysiology of the entire heart?

* Models of the electrical activity of the heart during
cardiac fibrillation provide serve as a valuable example
of just how hard this might be.

@ LIVING STATE PHYSICS GROUP
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Will a particular antiarrhythmic drug alter either the
fibrillation or defibrillation thresholds?

e Or... Why I use rabbit hearts as analog computers.
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The Ultimate Forward Problem:

How can we use knowledge of the
protein sequence for voltage-gated ion
channels to predict numerically the
electrocardiogram during a long
episode of fibrillation?

TL179 BMES 2000
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The characteristics
of cardiac fibrillation
are set by the spatial
scale of the entire
heart

Leon Glass
TL179 BMES 2000
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lon channels are in control

TL179 BMES 2000 6
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Two extremes: Models of cardiac activity

and the cardiac
dipole moment

Channel Kinetics
from patch clamp

TL179 BMES 2000 8
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The problem of scales:

The characteristic lengths and times in biological systems
span MANY orders of magnitude.

e Anion channel: 10 nm ~ 1 channel/nm?
o Cardiac cell: 150 mm x 15 nm x 15 nm
500 to 30,000 channels per cell depending upon cell type

e The heart; 10 cm
4 x 10° cells
2 X 1014 channels

 Thebody: 1m

@ LIVING STATE PHYSICS GROUP

e Channels change in 1 - 10 ns, fibrillation time scale ~10 s

TL179 BMES 2000 9
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The Ultimate Forward Problem:

*Assume gated Ion-channel protein sequence:
«Assume that you can compute
— Protein structure:

— Protein Kinetics:

— Channel response to antiarrhythmic drugs:

— Cellular, tissue and cardiac electrodynamics:
— Electrocardiogram:

— Fibrillation and defibrillation thresholds:

\What will this involve?

TL179 BMES 2000
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Start with the DNA sequence for a potassium
channel...

human Kvl1.5

GCGGCCGCGCGGCTTTTTGACGTCAGGGCCAAGCGAGGGGATCGCGCCAGCAACCCCAGCTCTCCCCAGAGAGGGEGCCGG
CCGACCGCTGGAGCGGAGCCTGACGCCAGGCGCCCGCGGAGCGTGAGTAGGGGGCGCGGGAGCCGGTCAGCTGGGGCGCA
GCATGCCCTCTGCTCCCGCGECATGGAGATCGCCCTGGTGCCCCTGGAGAACGGCGGTGCCATGACCGTCAGAGGAGGCG
ATGAGGCCCGGGCAGGCTGCGGCCAGGCCACAGGGGGAGAGCTCCAGTGTCCCCCGACGGCTGGGCTCAGCGATGGGCCC
ARGGAGCCGGCGCCAAAGGGGCGCGCGCAGAGAGACCGCGGACTCGGGAGTGCGGECCCTTGCCTCCGCTGCCGGACCCGGE
AGTGCGGCCCTTGCCTCCGCTGCCAGAGGAGCTGCCACGGCCTCGACGGCCGCCTCCCGAGGACGAGGAGGAMGAAGGCG
ATCCCGGCCTGGGCACGGTGGAGCGACCAGGCTCTGGGCACGGCGTCCCTGCACCACCAGCGCGTCCACATCAACATCTCC
GGGCTGCGCTTTGAGACGCAGCTGGGCACCCTGGCGCAGTTCCCCAACACACTCCTGGGGGACCCCGCCAAGCGCCTGCC
GTACTTCGACCCCCTGAGGAACGAGTACTTCTTCGACCGCAACCGGCCCAGCTTCGACGGTATCCTCTACTACTACCAGT
CCGGGGGCCGCCTGCGAGGGGTCAACGTCTCCCTGGACGTGTTCGCGGACGAGATACGCTTCTACCAGCTGGGGGACGAG
GCCATGGAGCGCTTCCGCGAGGATGAGGGCTTCATTAAAGAAGAGGAGAAGCCCCTGCCCCGCAACGAGTTCCAGCGCCA
GGTGTGGCTTATCTTCGAGTATCCGGAGAGCTCTGGGTCCGCGCGGGCCATCGCCATCGTCTCGGTCTTGGTTATCCTCA
TCTCCATCATCACCTTCTGCTTGGAGACCCTGCCTGAGTTCAGGGATGAACGTGAGCTGCTCCGCCACCCTCCGGCGCCC
CACCAGCCTCCCGCGCCCGCCCCTGGGGCCAACGGCAGCGGGGTCATGGCCCCCGCCTCTGGCCCTACGGTGGCACCGCT
CCTGCCCAGGACCCTGGCCCGACCCCTTCTTCATCGTGGAGACCACGTGCGTGATCTGGTTCACCTTCGAGCTGCTCGTGC
GCTTCTTCGCCTGCCCCAGCAAGGCAGGGTTCTCCCGGAACATCATGAACATCATCGATGTGGTGGCCATCTTCCCCTAC
TTCATCACCCTGGGCACCGAACTGGCAGAGCAGCAGCCAGGGGGCGGAGGAGGCGGCCAGAATGGGCAGCAGGCCATGTC
CCTGGCCATCCTCCGAGTCATCCGCCTGGTCCGGGTGTTCCGCATCTTCAAGCTCTCCCGCCACTCCAAGGGGCTGCAGA
TCCTGGGCAAGACCTTGCAGGCCTCCATGAGGGAGCTGGGGCTGCTCATCTTCTTCCTCTTCATCGGGGTCATCCTCTTC
TCCAGTGCCGTCTACTTCGCAGAGGCTGACAACCAGGGAACCCATTTCTCTAGCATCCCTGACGCCTTCTGGTGGGCAGT
GGTCACCATGACCACTGTGGGCTACGGGGACATGAGGCCCATCACTGTTGGGGGCAAGATCGTGGGCTCGCTGTGTGCCA
TCGCCGGGETCCTCACCATTGCCCTGCCTGTGCCCGTCATCGTCTCCAACTTCAACTACTTCTACCACCGGGAAACGGAT
CACGAGGAGCCGGCAGTCCTTAAGGAAGAGCAGGGCACTCAGAGCCAGGGGCCGGGGCTGGACAGAGGAGTCCAGCGGAA
GGTCAGCGGGAGCAGGGGATCCTTCTGCAAGGCTGGGGGGACCCTGGAGAATGCAGACAGTGCCCGAAGGGGCAGCTGCC
CCCTAGAGAAGTGTAACGTCAAGGCCAAGAGCAACGTGGACTTGCGGAGGTCCCTTTATGCCCTCTGCCTGGACACCAGC
CGGGAAACAGATTTGTGAAAGGAGATTCAGGCAGACTGGTGGCAGTGGAGTAGGGAATGGGAGGCTTCTGAACATGGATA

COU I‘tesy Of Dll‘k SCh neldel‘S TCTACATTATCCGCAGAGTATTTGACTCACTCCTCT

TL179 BMES 2000 11
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Assemble the proteins
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And we solve the protein folding
problem...

TL179 BMES 2000
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Insert the folded proteins into the membrane

(b) Voltage gated Ca’* channel protein

Voltage-gated Na* channel

Voltage-gated Ca** channel

Voltage-gated K* channel

TL179 BMES 2000 14
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S R Durrell and HR. Guy, Brophysical Journa

Compute how
the protein
conformation
depends upon
voltage or ligand
binding

TL179 BMES 2000 15
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See which
drugs block
the channel

TL179 BMES 2000 16
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Compute the time-dependent channel
conductance

0 75
Potential [mV]

Unitary current [pAl

4]
Potential [mV]

Wilders and Jongsma, Biophys. J., 65: 2601-2613 (1993)
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502661




DEPARTMENT OF PHYSICS AND ASTRONOMY, VANDERBILT UNIVERSITY

@ LIVING STATE PHYSICS GROUP

R. Wilders and H.J. Jongsma, Biophysical J., 65: 2601-2613 (1993)

-40

Stochastically
activate the
channels

TL179 BMES 2000 19
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Describe the channel currents in terms of a Hodgkin-Huxley-like
model such as Luo-Rudy | or Il

I N

Current

sodium current

L-type calcium current
T-type calcium current
Na-Ca exchange

| ~(4-AP-sensitive)
| (Ca-activated)
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M.S. Spach and J.F. Heidlage, in High Performance Computing in Biomedical Research, T.C.
Pilkington et al., Eds., (CRC, Boca Raton, 1993) pp 289-317

Sprinkle the
channels and their
currents onto a
family of virtual
cardiac cells

TL179 BMES 2000 21
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M.S. Spach and J.F. Heidlage, in High Performance Computing in Biomedical Research, T.C.
Pilkington et al., Eds., (CRC, Boca Raton, 1993) pp 289-317

Divide each
cell into a
numerically
stable subunit

TL179 BMES 2000 22
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M.S. Spach and I.F. Heidlage, in High Performance Computing in Biomedical Research, T.C.
Pilkington et al., Eds., (CRC, Boca Raton, 1993) pp 289-317

Assemble
the cells into
small regions

of cardiac

tissue

TL179 BMES 2000 23
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Include the three-dimensional cable properties of the

anisotropic cardiac syncytium

TL179 BMES 2000
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Assemble the regions into a whole heart
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Compute 10 seconds of fibrillation ...

Courtesy of Debra Echt TL179 BMES 2000 26
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The computer s
runs forever.... Vol ocims

vol./vol;, vol/vol;, area_/vol,-

L O O k at th e Concentrations
[Na*], [Na*], [K*], [K+1., [K*]aen,
model [CI],, [CIT,, [Ca*?],, [Ca*?],, [Ca*?l,,
[ATP],, [ACh],, [H*],, [H'],

Currents with activation and inactivation (6 X 3

81 free parameters T e fouts Kot T

Currents with activation (7 X 2

for each volume e T Tos T Toos T T

Steady-state currents

element In the Teasr Trnoe Tes Tearer Tencs Tercs Tonn
model rme
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2791 188 §2794
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The Problem of Scale: Numerical Models

» Divide each cardiac cell into 10 segments:

4 x 10%°segments/heart
o At least 50 currents and other variables/segment

2 x 10*2variables/heart
5 ps/timestep: 2 x 10° timesteps/10s of fibrillation
e 4 x 1018 equations to solve ... micromoles ....
46,000 years on a 25 MFLOP workstation
10 years on 1200 100 MFLOP workstations
e 1 year on a 1 TFLOP workstation
» At 100 bytes/segment, 4 Thytes of memory or disk to
model

TL179 BMES 2000
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Discussion

* Whole-heart cardiac models involve brute-force
solution of partial differential equations, using

either HH-type models (LR, etc), or eikonal
equations

o At present, there are few If any numerical,
theoretical, or analytic connections between the
molecular description of the channel and either
HH-type or eikonal models

TL179 BMES 2000
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Solutions to the Ultimate Forward Problem

* Develop efficient multiscale/mesoscale models to span

the full range of space and time

— Molecular dynamics vs. statistical mechanics vs.
thermodynamics

— Eikonal equations for the wave front properties

* An Isolated rabbit heart: a self-assembling,
multivarible, multistate, massively parallel, non-

linear analog computer
— Solves ~1017 equations/second at $30/hour

— Requires improved programming techniques
— Requires improved readout of the answer

TL179 BMES 2000

30



@ LIVING STATE PHYSICS GROUP

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

Characterizing the Cardiac State
What do you do with all the data?

* Ontological failure: “The phenomena you are
Interested In requires elements or laws outside of
the set you have been given.”

 Epistimological Failure: “You have enough
elements and the laws do apply, but you yourself
cannot understand the explanation that they
provide.”

D Bray, TIBS 22, pp 325-326 (1997)

TL179 BMES 2000 31
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Visualizing Fibrillation

@ LIVING STATE PHYSICS GROUP
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http://www.vanderbilt.edu/lsp/talks/multimedia/Vm_Var_Phase_Curl.mp4
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And the Third Dimension...

@ LIVING STATE PHYSICS GROUP

Transmural Intramural

Spiral
VS
Scroll
Waves

Arkady Pertsov, Syracuse

e Transmural waves can exist in 2-D (thin) or 3-D (thick)
 Intramural waves require ~1 cm wall thickness

TL179 BMES 2000
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Understanding Cardiac Dynamics

@ LIVING STATE PHYSICS GROUP
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Questions

TL179 BMES 2000
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