

Magnetic Imaging of Ongoing Corrosion ACTIVITY in Aircraft Lap Joints

- Corrosion DAMAGE

 can be detected by
 various NDE techniques
- Corrosion ACTIVITY
 can be studied for
 exposed corrosion using
 standard electrochemical
 techniques
- Only SQUIDs can detect ongoing hidden corrosion activity, as in an aircraft lap joint.

KC-135 lap joint

SQUID image of corrosion activity

 $SIMA (nT.mm^2)$

DEPARTMENT OF PHYSICS AND ASTRONOMY, VANDERBILT UNIVERSITY

Summed magnetic activity versus time for old aircraft lap joints

- Reproducible dry background
- Low activity in 98% relative humidity air
 - Distilled H₂O activates the chemistry within the lap joint
- 0.01 M chloride shows higher activity
- SQUIDs provide a unique research tool for studying hidden corrosion

High Resolution LTS-SQUID Microscope for Room-Temperature Samples

Field Sensitivity [fT]

Field sensitivity
500 um diameter pickup coil

Field sensitivity 350 fT/Hz^{-1/2} @ f>1Hz

Frequency [Hz]

4K-300K Sensor-Sample Spacing < 100 μm

LIVING STATE PHYSICS GROUP

DEPARTMENT OF PHYSICS AND ASTRONOMY, VANDERBILT UNIVERSITY

Remanent Magnetization of Martian Meteorite ALH 84001

Propagation of Action Currents in Cardiac Tissue

1 ms after stimulus

4 ms

10 ms

16 ms