

THE PHYSICS OF THE HEART

John P. Wikswo
Living State Physics Group
Department of Physics and Astronomy
Vanderbilt University, Nashville, TN 37235

TL132

Outline

- A brief review of cardiac physiology
- The classical forward and inverse problems
- The ultimate forward and inverse problems
- Cardiac physics research at Vanderbilt

TL132

The cardiac membrane is a planar accelerator that uses gradients of 10⁷ volts per meter to accelerate heavy ions to energies of 70 meV.

L132 3

The Spatial and Temporal Scales of Cardiac Electrodynamics

- Spatial Scale: 10²⁴ in volume
 - Ten-centimeter diameter of the entire heart
 - Nanometer pore of gated ion channels
 - Sequence of the proteins that form those channels
- <u>Temporal Scale</u>: 10⁹ in time
 - One-second heart beat
 - Many seconds of a complex arrhythmia
 - Nanosecond conformational changes of protein channels

ΓL132 4

The Classical Forward and Inverse Problems

- Forward: Given source, find potential/field
 - -Predict the ECG or MCG from a description of the cardiac sources.
- Inverse: Given potential/field, find source
 - -Determine an effective source for cardiac electrical activity from the ECG or MCG.
 - -Estimate the epicardial potentials from the thoracic potential or magnetic field maps.

 Γ L132

The Ultimate Inverse Problem

From the ECG, identify the behavior of various membrane ion channels to guide pharmacological control of arrhythmias.

The Ultimate Forward Problem

- Predict the ECG from knowledge of channel protein structure.
- Predict the global functional consequences of channel-level defects and interventions.

Current Research

- The magnetocardiogram
- The bidomain model
- The magnetic field from cardiac tissue slices
- Cardiac reentry and fibrillation
- The response of cardiac tissue to strong shocks
- The magnetic field from gastrointestinal electrical activity
- The magnetic field from corrosion in aging aircraft
- Non-destructive testing with SQUID magnetometers

EL132 8

Cardiac Reentry

- Self-sustained excitation due to propagating activation wave fronts in the heart that continue to re-excite different regions of tissue rather than terminating after a single excitation
- Anatomical reentry activation wave fronts that travel in one direction around an anatomical obstacle
- Functional reentry -- activation circulate around a dynamical phase singularity

Functional Reentry

- For a normal propagating wave front, the tissue in front of the wave front is resting and excitable, and that behind is depolarized and unexcitable
- Functional reentry occurs when one end of an excitation wave front is a phase singularity -- a region of undetermined phase that is neither resting or depolarized
- The challenge is to create the phase singularity

TL132

Winfree's Critical Point Hypothesis

Phase singularities (critical points) are created when the excitability contour T* following the first stimulus (S1) intersects the stimulus threshold contour S* from the second stimulus (S2).

 Γ L132

Bidomain Anisotropies and the Critical Point Hypothesis

NO SINGULARITIES A

Initiation of Spiral Wave Reentry

Spiral Wave and Figure-of-Eight Reentry

Initiation of Quatrefoil Reentry

Quatrefoil Reentry Predicted by the Bidomain Model

Experimental Setup

Optical Imaging of Quatrefoil Reentry

Selected frames of cathodal-break movie

Cathodal-Break Isochrones

Anodal-Break Isochrones

The Challenge

The experimental and theoretical challenge offered by studies of cardiac fibrillation arises from the fact that cardiac electrical activity fully spans both the temporal and spatial scales: a factor of 10^9 in time and 10^{24} in volume.