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INTRODUCTION 

As the commercial and military aircraft fleets age, additional resources are required to 
ensure their airworthiness. As the aircraft become older, the more likely they are to develop 

structural damage that may lead to unscheduled repairs or, in the worst case, accidents. 
Fatigue and corrosion are the two main causes of structural damage in aging aircraft and 
this research examines the use of a Superconducting QUantum Interference Device 
(SQUID) as a tool for Nondestructive Evaluation (NDE) to detect and characterize these 

aging aircraft problems. The primary advantage of using SQUIDS in NDE over other 
techniques is the ability to detect second layer cracks and corrosion commonly found in 
aircraft structures. 

In general, verification of a NDE method means demonstrating, through experiment 
and/or calculations, the ability to distinguish signal from noise for the flaw types and 
sizes and instrument/flaw configuration’s expected in the actual inspection. A common 
approach to quantify and validate the capabilities of an inspection technique is to conduct 
a probability of detection (POD) analysis. There are basically two ways to conduct this 
type of analysis. The first is experimentally9 which requires a large number of samples 
with a range of flaw characteristics being examined by several inspectors. The second is 
analytically, which requires construction of a model to simulate the inspection process 
which is run for a range of samples and testing conditions. Due to the large number of 
parameters defining a method, experimental results alone are usually inadequate but are 
still required to describe system parameters that cannot be modeled analytically. With 
mathematical modeling, the response of the measurement system to the anomalies of 
interest (e.g., cracks, corrosion, and voids) can be simulated if enough is known about the 
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f i e l d - f l a w  interaction t h a t  g e n e r a t e s  t h e  response f u n c t i o n .  D u e  to t h e  c o m p l e x i t y  of t h e  
mathematics of t h e s e  interactions, i d e a l i z e d  models a r e  normally u s e d  b u t  t h e s e  s t i l l  
p r o v i d e  sensitivity analysis information useful in e v a l u a t i n g  t h e  i n s p e c t i o n  t e c h n i q u e .  

T h e  f o l l o w i n g  is t h e  development of a measurement m o d e l  s i m u l a t i n g  t h e  scanning of 
a S Q U I D  o v e r  a sample c o n t a i n i n g  a crack. We m o d e l  a closed c r a c k  t h r o u g h  a s p e c i a l  

development of boundary integral e q u a t i o n s ,  w h i c h  is u s e d  to c a l c u l a t e  corresponding 
magnetic f i e l d s ,  s i m u l a t i n g  w h a t  t h e  S Q U I D  i n s t r u m e n t  m e a s u r e s .  T h e  measurement 
m o d e l  w i l l  be u s e d  l a t e r  in a P O D  a n a l y s i s .  

THEORY 

S O U I D  Measurement Models 

Of t h e  s e v e r a l  N D E  t e c h n i q u e s  a v a i l a b l e  to t h e  S Q U I D  u s e r ,  d c - c u r r e n t  i n j e c t i o n  w a s  
u s e d  in t h i s  research s i n c e  t h e  c u r r e n t  distributions produced a r e  s i m i l a r  to t h e  planar ac 
e d d y  currents produced by s h e e t  inducers w h i c h  a r e  proposed f o r  a f i e l d  instrument. A l s o ,  
existing B I E  programs c a n  be modified to m o d e l  d c - c u r r e n t  i n j e c t i o n  w h i c h  provides t h e  
b a s i s  f o r  an accurate measurement model. I n j e c t i n g  a u n i f o r m  d c - c u r r e n t  in t h e  specimen 
causes t h e  c u r r e n t  to be parallel to t h e  specimen s u r f a c e  u n d e r  t h e  pickup c o i l .  T h e  
a s s o c i a t e d  magnetic f i e l d  is mostly t a n g e n t i a l  to t h e  p l a t e  s u r f a c e  f o r  s c a n s  l o c a t e d  
c e n t r a l l y  a n d  w i t h  s m a l l  lift-off d i s t a n c e s .  A f l a w  in t h e  specimen w i l l  p e r t u r b  t h e  c u r r e n t  

distribution a n d  p r o d u c e  a vertical magnetic f i e l d  c o m p o n e n t  t h a t  c a n  t h e n  be detected by 
t h e  SQUID. W h e n  t h e  S Q U I D  is s c a n n e d  t w o - d i m e n s i o n a l l y  o v e r  t h e  s a m p l e ,  a magnetic 
m a p  is p r o d u c e d ,  r e v e a l i n g  a f l a w  s i g n a t u r e  t h a t  commonly h a s  a d i p o l a r  s h a p e  ( F i g .  1 ) .  

Boundary Integral Equation ( B I E )  Measurement M o d e l  

Boundary Integral E q u a t i o n s  a r e  t h e  b a s i s  f o r  o u r  S Q U I D  N D E  measurement model. 
T h e  B I E  formulation solves f o r  t h e  p o t e n t i a l  p r o b l e m  of a d c - c u r r e n t  carrying p l a t e  
c o n t a i n i n g  a f a t e n e r  h o l e  w i t h  a c r a c k  e m a n a t i n g  f r o m  o n e  s i d e .  F r o m  t h e s e  potentials, t h e  

magnetic f i e l d  c a n  be c a l c u l a t e d  t h r o u g h  t h e  l a w  of B i o t  a n d  S a v a r t .  T h e  B I E  approach 

u s e s  a s p e c i a l  formulation incorporating t h e  c r a c k  geometry i n t o  t h e  G r e e n ’ s  f u n c t i o n ,  
t h e r e b y  eliminating t h e  n e e d  to m o d e l  it as p a r t  of t h e  b o u n d a r y .  It is i m p o r t a n t  to p o i n t  o u t  

t h a t  t h i s  m o d e l e d  c r a c k  is a closed crack, as compared to a s l o t  having finite width. A s l o t -  

t y p e  c r a c k  ( a n  approximation of a f a t i g u e  crack) w o u l d  n o t  r e q u i r e  t h e  s p e c i a l  G r e e n ’ s  
function formulation a n d  c o u l d  j u s t  be m o d e l e d  as p a r t  of t h e  b o u n d a r y .  

SQUID Pickup Coil 

Figure 1. 2 - D  s c a n  o v e r  sample a n d  r e s u l t i n g  magnetic f i e l d  m a p .  
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Details of the boundary integral equation development are provided in [ 1 ] and the 
.following discussion summarizes the application to the electromagnetic problem. The Biot- 
Savart law [2] can be used to determine the z-component of the magnetic field over a plate, 
with thickness h and conductivity 0, by integration of the tangential derivative of the 

electric scalar potential, V, over the crack (II) and other boundaries (S) . 

The BIE program calculates 5 = QV l i as a piecewise linear result since V(Q) is 

piecewise quadratic. Therefore, Vf can be rewritten for the line segment along S on the 

integration boundary as 5 (Q) = !J~ + bZs . This is done for all boundary surfaces except 

for the crack surface (I). Substituting this linear relationship into the integral for Bz (c), 

we obtain the contribution to the magnetic field at point c due to all boundaries except for 
r 

For the non-crack boundaries, this integration is fairly straightforward taking into 
account the geometrical relationship between the pickup coil and the boundary segments. 
Carrying out the integration, we obtain the following summation over all non-crack 
boundary segments on S 

where O1 and 0Z correspond to the angles associated with each endpoint of the segment as 
the summation moves in a positive sense around the boundary (material on left). 

For the crack (length a), the singular behavior of Vf at the crack tip requires numerical 

integration to evaluate the magnetic field contribution of the crack. Values of Vl will be 

evaluated near the upper and lower crack surfaces using the BIE program and then the 
magnetic field will be calculated through a numerical integration of the previously stated 

Biot-Savart relation (Eq. 1). The series expansion of I$ is given by [3] 

-where A ($nd A( x J are analytic functions. The first term contains the discontinuity at 
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the crack tip while the second term is needed to match far field boundary conditions. On 
the crack surface (I) this can be rewritten as 

where R is the distance measured from the crack tip. Equation 5 is well behaved except 

at the crack tip. For the region near the crack tip, the behavior of l$ is known to follow 

r ( =  Ar+ P --sin-, 
J- 2zR 2 

where K’ is the potential intensity factor (PIF) of the crack. Note that at R = 0 (crack 

tip), Vl = c0 . The sine term reflects a geometrical dependence of 5 on p, the angle 

measured from the crack tip to the evaluation point and results in either a plus or minus 
sign multiplier when integrating on the crack surface. By combining equations (5) and 
(6), we can express the term multiplying the singular term, in terms of the PIF 

With the function value at the crack tip now defmed, we can continue with the numerical 

integration development. 

Numerical Integration 

Numerical integration over the crack is accomplished through discretization of the crack 

boundary into elements. By utilizing a coordinate transformation, Vf can be expressed in 

terms of nodal values and interpolation functions (shape functions) of an intrinsic 

c r a c k - t i p  element 

I  

s3 

H cw-ter WnJ’ 

I 

0 

regular element 

scrack tip 

Figure 2. Discretization of crack into elements. 
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coordinate 5. Once mapped into c-space, Gaussian quadrature numerical integration can 
be used to evaluate the integral. This formulation uses quadratic interpolation functions 
N,,,(c) which requires three nodes per boundary element. The crack is modeled with one 
crack-tip element containing the crack-tip node and one regular element (Fig. 2). The 
regular element is a straight forward application of the interpolation functions but the 
crack-tip element will use a quarter-point formulation [4] to map the singular behavior at 

the crack tip. 

The general form of the quadratic 
integrated into the c-space are 

interpolation functions used to map the function to be 

The coordinate transformation into c-space of the integral results in the following sum 

where Fk is the value of the function at the MI node and J is the Jacobian of the mapping 

that accounts for the spatial scaling associated with the mapping, 

J(s,~)=-$=+~~, 
k=l @ 

For those boundary elements that do not contain the crack tip, the resulting integral for Bz 

becomes 

which can now be numerically integrated using Gaussian quadrature techniques. 
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For the crack-tip element on the upper crack surface, the standard mapping to c-space 

needs to be modified to accommodate the l/& behavior of 5 (s) at the crack tip. The 

general approach is to split the V,(S) term into a singular term multiplied by a non- 

singular coefficient. The form of V,(s) follows from Eq. (5), 

To map Y(S) into {-space, the singular term uses an inverse mapping relationship and 

the non-singular term uses the quadratic shape functions. For the inverse mapping, 

the l/h behavior is represented by placing the midnode of the quadratic element at the 

quarter point location, 

The Jacobian, J, is given by 

J ds Ll+ =- =- c 4) 
dt2 ’ 

Note that at the s=O (<=-1) point the Jacobian also equals zero. This characteristic is 
important when evaluating the integral of the mapped function. Therefore, the BZ 
contribution due to the crack-tin element on the unner crack surface is as follows 

Note that as ~--+-I, the singularity term (c+l in denominator) goes to infinity but is 
canceled by the Jacobian term (c+l in numerator) going to zero, thereby making the 
overall function finite in the mapped space. All values of F, r, and s are known except for 
F at the crack tip node which has the singularity. But at the crack tip the value of the 

function is related to the PIF (Eq. 7), in that F(sJ = T/a. 
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EXPERIMENTAL VALIDATION 

One of the validation experiments used a 5 mA dc-current injected into a 100 mm x 
150 mm x 0.03 mm copper clad circuit board containing a 15 mm x 0.03 mm slot cut 
with a scalpel. Although this setup does not provide completely uniform current injection 
across the sample (transverse to the slot) due to the point source electrodes, the-region 
around the centrally located slot should be relatively uniform. Some discrepancy is 
expected due to the fact that the scalpel-cut slot has width rather than the closed crack 
used in the measurement model. Direct amplitude comparison is not possible and, 
therefore will require a scaling factor between the measured magnetic field and the 
calculated magnetic field. Magnetic field shape characteristics (matching of peaks and 
valleys) will determine the accuracy of the measurement model. 

Figure 3 shows a comparison of the centerline profiles, after scaling, of the magnetic 
field maps obtained by experimental measurement (solid line) and from the measurement 
model calculation (dashed line). The two are in very good agreement with respect to the 
overall profile shape. Since the calculated field is scaled, a difference between the model 
and experiment would show up as a mismatch of the profiles at either the edge or the 
crack depending on which was used as reference in the scaling. 

SUMMARY 

This research is directed towards the use of a Superconducting Quantum Interference 
Device (SQUID) as a tool for Nondestructive Evaluation (NDE) to detect and characterize 
damage associated with aging aircraft. The primary advantage of using SQUID’s in NDE 
over other techniques is the ability to detect second layer cracks and corrosion commonly 
found in aircraft structures. In order to quantify and validate the capabilities of SQUID’s 
in this role, we are beginning a probability of detection (POD) analysis. This paper 

introduces the analytical model that will be used to conduct this analysis 

Centerline scan position 

Figure 3. Magnetic field map centerline profiles comparison. 
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The a p p r o a c h  has b e e n  to develop a measurement model simulating the s c a n n i n g  of a 
SQUID o v e r  a sample containing a crack. B o u n d a r y  i n t e g r a l  equations, using a special 
Green’s f u n c t i o n  i n c o r p o r a t i n g  the crack, are u s e d  to solve the potential p r o b l e m .  T h i s  
special formulation eliminates the necessity of f i n e  meshes at the crack t i p s  n o r m a l l y  
r e q u i r e d  for comparable approaches. F r o m  the BIE potential solution, the m a g n e t i c  field 
above the sample can be calculated through numerical integration techniques of the Biot- 

Savart l a w .  S p e c i f i c  techniques, s u c h  as quadratic i n t e r p o l a t i o n  functions and a q u a r t e r -  
point f o r m u l a t i o n ,  w e r e  r e q u i r e d  to accommodate the s i n g u l a r  b e h a v i o r  at the crack t i p .  
Preliminary comparisons w i t h  e x p e r i m e n t a l  results s h o w  g o o d  agreement w i t h  the 
measurement model and validation w i l l  continue, as m o r e  e x p e r i m e n t a l  d a t a  s e t s  become 
available. * 
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