Zwitterionic pyridinium derivatives of \([\text{closo-1-CB}_9\text{H}_{10}]^-\) and \([\text{closo-1-CB}_{11}\text{H}_{12}]^-\) as high \(\Delta \varepsilon\) additives to a nematic host†

Jacek Pecyna, Damian Pociecha and Piotr Kaszyński*ac

Substituted closo-carbaborate–pyridinium zwitterions were prepared in 35–50% yield by reacting 1-amino-closo-1-carbaboranes with 4-alkoxypyrylium triflates. Two of the new materials, 1(6)d and 2(10)b, exhibit a high temperature SmA phase, whose stability is driven by dipolar interactions. Solution studies in a nematic host, \(\text{ClEster}\), demonstrated high positive dielectric anisotropy of these new compounds (\(\Delta \varepsilon = +50\)) resulting from a longitudinal molecular dipole moment of about 20 D.

Introduction

Polar liquid crystals and additives enable electro-optical switching and are essential components of materials for liquid crystal display (LCD) applications. Recently, we have demonstrated that zwitterionic derivatives of the \([\text{closo-1-CB}_9\text{H}_{10}]^-\) cluster (A, Fig. 1) have high dielectric anisotropy and are useful additives to nematic materials for LCD. In this context, we developed a synthetic methodology and prepared 1-sulfo- and 1-quinuclidinium, and also 10-sulfonium- and 10-pyridinium zwitterions, compounds of the general structure IIA and I. Some of them exhibit nematic behavior and \(\Delta \varepsilon\) reaching a record high value of 113.5(!) in nematic solutions. The preparation of 1-pyridinium derivatives of the \([\text{closo-1-CB}_9\text{H}_{10}]^-\) (A) and \([\text{closo-1-CB}_{11}\text{H}_{12}]^-\) (B) clusters however was very inefficient due to the mechanistic issue in the former, and instability of the key intermediate in the latter case. Such pyridinium derivatives IIA and IIB (Fig. 1, \(Q = \text{Pyr}\)) are predicted to have significant longitudinal dipole moments, and, consequently, high positive \(\Delta \varepsilon\). In addition, they are expected to have lower melting points and be more soluble than the quinuclidinium analogues.

Here we demonstrate a simple method for preparation of 1-pyridium zwitterions of anions A and B and their use as high \(\Delta \varepsilon\) additives to liquid crystal materials for LCD applications.

Results and discussion

Synthesis

Compounds 1[n], 10-vertex derivatives of type IIA, and 2[n], 12-vertex derivatives of type IIB, were obtained by adapting a general method for converting pyrylium salts to \(N\)-substituted pyridinium derivatives and following a single example of using 4-alkoxypyrylium in this context. Thus, a reaction of 1-amino derivatives \(3[n]\) and \(4[n]\) with 4-alkoxypyrylium salts 5 in anhydrous THF gave \(1[n]\) and \(2[n]\), respectively, in 35–50% yields (Scheme 1). 4-Alkoxypyryliums are very rare, however triflate salts 5 were conveniently obtained by alkylation of 4H-pyran-4-one with appropriate alkyl triflate 6. In addition to three primary alkoxypyrylium 5a, 5b and 5d, the new method was demonstrated also for a secondary alkoxypyrylium. Thus, \((S)2\)-octanol was converted to triflate 6c and subsequently to pyrylium salt 5c with apparent partial racemization (ee = 35%), as evident from the analysis of the pyridinium product 1[6]c. This

![Fig. 1. The structures of the \([\text{closo-1-CB}_9\text{H}_{10}]^-\) and \([\text{closo-1-CB}_{11}\text{H}_{12}]^-\) anions (A and B) and their zwitterionic 1,10-(IA, IIA) and 1,12-disubstituted (IB, IIB) derivatives. Q⁺ represents an onium fragment such as ammonium, sulfonium or pyridinium. Each vertex represents a BH fragment and the sphere is a carbon atom.](Image 472x710 to 553x764)
indicates that the electrophilic O-alkylation of 4H-pyran-4-one with 6c proceeds through an ion pair and partial scrambling of the stereocenter. Triflate 6c was significantly more reactive than primary alkyl triflates and synthesis of 1[6]c and 2[6]c was performed at lower temperatures.

The requisite alkyl amines 3[n] and 4[n] were obtained by alkylation of the corresponding iodo amines 7 and 8 under Pd-catalyzed coupling conditions using either RMgBr or RZnCl reagents. The synthesis of 10-hexyl amine 3[6] was reported previously 13 and some 4[n] are reported elsewhere.9 The iodo amine 8 was prepared from iodo acid 9 following the procedure described for iodo amine 7 (Scheme 2),13 or alternatively obtained by iodination of [closo-1-CB11H11-1-NH3][10].9

Electronic absorption

Pyridinium derivatives 1[n] and 2[n] are colorless solids. Spectroscopic analysis demonstrated that the 12-vertex derivative 2[6]c is more transparent in the UV region than its analogue 1[6]c, however both compounds exhibit relatively strong π → π* absorption bands at λmax = 265 nm (calcd at 260 nm, f = 0.16)14 for 2[6]c and at λmax = 282 nm (calcd at 309 nm, f = 0.25) for 1[6]c (Fig. 2). The origin of this absorption is an efficient intramolecular charge transfer from the HOMO, localized on the cluster, to the LUMO on the pyridinium fragment as shown for 1[6]b and 2[6]b in Fig. 3.8 Interestingly, the HOMO of the latter has lower energy and significantly greater contribution from the B-alkyl chain than observed in the 10-vertex analogue 1[6]b.

Thermal analysis

All six compounds melt above 100 °C (Table 1). The lowest melting points were observed for the branched (2-octyloxy)pyridinium derivatives 6c, which is in agreement with results obtained for bis-zwitterionic derivatives of the [closo-B10H10]2− cluster.15 It is considered that the branching methyl group close to the pyridinium ring disrupts efficient packing in the solid state driven by coulombic interactions.15 The highest melting point among the six compounds (216 °C) is exhibited by three-ring derivative 1[6]d. Data in Table 1 also suggest that derivatives of the [closo-1-CB10H10]− cluster [A] have lower melting points than the 12-vertex analogues (e.g. 1[6]c vs. 2[6]c), which is in agreement with general trends in mesogenic derivatives of 10- and 12-vertex carboranes.16-17

Polarizing optical microscopy (POM) and differential scanning calorimetry (DSC) revealed that 2[10]b and 1[6]d exhibit an
enantiotropic SmA phase with the clearing temperature of 202 °C and above 270 °C, respectively (Table 1 and Fig. 4).

XRD data

The formation of the SmA phase was confirmed by powder XRD measurements for 2[10]b. A diffractogram of the mesophase obtained at 195 °C showed a series of sharp commensurate reflections consistent with the lamellar structure with a layer spacing of 25.61 Å (Fig. 5). Considering the calculated molecular length of 31.75 Å, the observed layer spacing indicates 19% of interdigitation. The wide-angle region of the diffractogram shows an unsymmetric broad halo, which can be deconvoluted into two signals with the maxima 4.5 Å and 5.4 Å. The diffused signals correlate with the mean distance between the molten alkyl chains (former) and the mean separation between the carborane cages (latter).

Temperature dependence studies demonstrated that the SmA phase has a negative thermal expansion coefficient, \(\kappa = -0.0030 (1) \ \text{Å K}^{-1} \), while the thermal expansion coefficient of the Cr2 phase is positive (\(\kappa = +0.00598 (3) \ \text{Å K}^{-1} \)).

Smectic behavior of boron cluster-derived mesogens is very rare even for polar compounds, and the observed high-temperature SmA phase for 2[10]b and 1[6]d results presumably from strong lateral dipole–dipole interactions of the zwitterions. This is supported by a comparison of 2[10]b with its nonpolar isosteric analogue 1[10]b, a low temperature nematogen (\(T_{NI} = 25 \ ^\circ C \)) derived from p-caraborane.

![Fig. 4](image-url) (Left) DSC trace of 2[10]b. The heating and cooling rates are 5 K min\(^{-1}\). (Right) The optical texture of 2[10]b obtained at 190 °C on cooling from the isotropic phase.

Table 1 Transition temperatures (°C) and enthalpies (kJ mol\(^{-1}\), in italics) for 1[n] and 2[n]\(^a\)

<table>
<thead>
<tr>
<th>n</th>
<th>R</th>
<th>(T) (°C)</th>
<th>(\Delta H) (kJ mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1[n]</td>
<td></td>
<td>Cr 122 (33.7)</td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>CH(Me)C6H13</td>
<td>101 (21.5)</td>
</tr>
<tr>
<td>2[n]</td>
<td></td>
<td>Cr 205 (26.6)</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>C7H15</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>CH(Me)C6H13</td>
<td>130 (23.7)</td>
</tr>
</tbody>
</table>

\(^a \) Determined by DSC (5 K min\(^{-1}\)) in the heating mode: Cr = crystal; SmA = smectic A; I = isotropic. \(^b \) Decomp. \(^c \) Cr–Cr transition at 117 °C (9.7 kJ mol\(^{-1}\)).

![Fig. 5](image-url) XRD pattern for 2[10]b at 195 °C.

Table 2 Extrapolated dielectric data for selected compounds\(^a\)

| Compound | Mol% | \(\epsilon \) | \(\epsilon_{||} \) |
|----------|------|----------------|----------------|
| 1[6]c | 3.7 | 35 | 49 |
| 1[6]d | 2.7 | 54 | 67 |
| 2[10]b | 3.0 | 49 | 60 |
| 2[10]b | 2.5 | 44 | 54 |
| 1-Sulf | 3.3 | 39 | 45 |
| 1-Quin | 2.7 | 43 | 48 |

\(^a \) 10 μm cell. \(^b \) Ref. 3. \(^c \) 4 μm cell.
Table 3 Calculated molecular parameters for selected compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\mu_{\parallel}/D)</th>
<th>(\mu_{\perp}/D)</th>
<th>(\mu/D)</th>
<th>(\beta^3/)</th>
<th>(\Delta \alpha/\AA^3)</th>
<th>(a_{avg}/\AA^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1[6]d</td>
<td>20.18</td>
<td>2.36</td>
<td>20.32</td>
<td>6.7</td>
<td>37.0</td>
<td>57.1</td>
</tr>
<tr>
<td>2[6]b</td>
<td>20.03</td>
<td>2.26</td>
<td>20.15</td>
<td>6.4</td>
<td>33/4</td>
<td>59.1</td>
</tr>
<tr>
<td>1-Sulf</td>
<td>16.10</td>
<td>2.95</td>
<td>16.37</td>
<td>10.4</td>
<td>24.8</td>
<td>53.3</td>
</tr>
<tr>
<td>1-Quin</td>
<td>16.77</td>
<td>3.31</td>
<td>17.09</td>
<td>11.2</td>
<td>23.4</td>
<td>53.3</td>
</tr>
</tbody>
</table>

a Dipole moments and polarizability obtained at the B3LYP/6-31G(d,p) level of theory in CIEster dielectric medium. Polarizability values calculated from diagonal polarizability tensors were converted from a.u. to \(\AA^3 \) using the factor 0.1482. b Angle between the net dipole vectors \(\mu \) and \(\mu_{\parallel} \).

Binary mixtures

Three of the new compounds were investigated as additives to CIEster, which forms a nematic phase at ambient temperature characterized by a small negative \(\Delta \epsilon \). Results demonstrated that the two-ring zwitterions are more soluble in the host than the three-ring derivative 1[6]d, and 2[10]b forms stable 6 mol% solutions in the host. Extrapolation of the virtual \([T_{NI}] \) for 2[10]b from the solution data gives the N–I transition at 82 ± 4 °C, which is significantly lower than the SmA–I transition at 202 °C. This difference further supports the notion that SmA stability originates from dipolar interactions between the zwitterions. The branched derivative 1[6]c significantly disrupts the nematic order of the host and its extrapolated \([T_{NI}] \) is below −100 °C.

Dielectric measurements

Dielectric permittivity values change non-linearly with the concentration of the additives in CIEster as shown for 2[10]b in Fig. 6. This indicates some aggregation of the polar molecules in the solution, which is similar, albeit to lesser extent, to that previously observed for sulfonium (1-Sulf) and quinucilidinium (1-Quin) derivatives of type II. Therefore, dielectric parameters for the pure additives were extrapolated from dilute about 3 mol% solutions and results are shown in Table 2.

Analysis of data in Table 2 demonstrates that all three pyridinium derivatives exhibit substantial dielectric anisotropy. Zwitterions 1[6]d and 2[6]b have \(\Delta \epsilon \) values 54 and 49, respectively, which, for comparable concentrations, are higher by about 10 than those for the previously investigated 1-Sulf and 1-Quin derivatives. The value \(\Delta \epsilon = 35 \) extrapolated for 1[6]c with the branched alkyl chain is the lowest in the series, which is presumably related to the low order parameter as evident from dramatic destabilization of the nematic phase of the host.

Computational details

Quantum-mechanical calculations were carried out using Gaussian 09 suite of programs. Geometry optimizations for unconstrained conformers of 1[6]b and 2[6]b with the most extended molecular shapes were undertaken at the B3LYP/6-31G(d,p) level of theory using default convergence limits. The alkyl group was set in all-trans conformation co-planar with the pyridine ring in the input structure. The orientation of the alkyl substituents on the alicyclic ring and carborane cage in the input structure was set according to conformational analysis of the corresponding 1-ethyl derivatives. No conformational search for the global minimum was attempted.

Calculations in solvent media using the PCM model were requested with the SCRF (solvent = generic, read) keyword and eps = 3.07 and epsinf = 2.286 input parameters.

Electronic excitation energies for 1[6]b and 2[6]b in MeCN dielectric medium were obtained at the B3LYP/6-31G(d,p) level using the time-dependent DFT method supplied in the Gaussian package. Solvent calculations using the PCM model were requested with the SCRF (solvent = CD3CN) keyword. Selected molecular orbitals involved in these transitions are shown in Fig. S5 and S6.

Experimental part

General

Reactions were carried out under Ar and subsequent manipulations were conducted in air. NMR spectra were obtained at 128 MHz (\(^{11}B \)) and 400 MHz (\(^{1}H \)) in CDCl₃ or CD₃CN. \(^{1}B \)
chemical shifts were referenced to the solvent (\(^1\)H) or to an external sample of B(OH)\(_3\) in MeOH (\(^13\)B, \(\delta = 18.1\) ppm). Optical microscopy and phase identification were performed using a polarized microscope equipped with a hot stage. Thermal analysis was obtained using a TA Instruments DSC using small samples of about 0.5–1.0 mg.

Binary mixture preparation

Solutions of the pyridinium derivatives \(1[n]\) or \(2[n]\) in the CLeSter host (15–20 mg of the host) were prepared in an open vial. The mixture of the compound and host in CH\(_2\)Cl\(_2\) was heated for 2 h at 60 °C to remove the solvent. The binary mixtures were analyzed by polarized optical microscopy (POM) to ensure that the mixtures were homogenous. The mixtures were then allowed to stand for 2 h at room temperature before thermal and dielectric measurements.

Dielectric measurements

Dielectric properties of solutions of selected pyridinium \(1[n]\) or \(2[n]\) and \(1\)-Quin in CLeSter were examined with a Liquid Crystal Analytical System (LCAS – Series II, LC Vision, Inc.) using GLCAS software version 0.13.14, which implements literature procedures for dielectric constants. The homogenous binary mixtures were loaded into ITO electro-optical cells by capillary forces with moderate heating supplied by a heat gun. The cells (about 4 μm thick, electrode area 0.581 cm\(^2\) or about 10 m\(^2\) cm\(^2\), 55.52; H, 9.87; N, 3.81. Found: C, 55.96; H, 9.91; N, 3.78%.

General procedure for preparation of pyridinium derivatives \(1[n]\) and \(2[n]\)

A mixture of amine \(3[n]\) or \(4[n]\) (1 mmol) and the appropriate crude pyrylium triolate \(5\) [freshly prepared from 4H-pyrane-4-one (1.2 mmol) and alkyl triolate \(6\) in THF (1 mL) under Ar] was stirred overnight at room temperature. The solvent was evaporated to give a dark solid. Pure product \(1[n]\) or \(2[n]\) was obtained as a white crystalline solid in 34–51% yield by column chromatography (CH\(_2\)Cl\(_2\)/hexane, 1:1) followed by recrystallization from iso-octane/toluene and then EtOH.

\[1[6c]\] ee = 35% (AD-H Chiral, 15% EtOH in hexane), [\(d\)\(_{24}\)\(^\text{H}\) = 8° [\(c = 1.0,\) MeCN]; \(^1\)H NMR (CDCl\(_3\), 400 MHz) \(\delta = 0.3–2.8\) (br m, 8H), 0.90 (t, \(J = 7.0\) Hz, 3H), 0.92 (t, \(J = 7.0\) Hz, 3H). Following a general method for alkyl triolates,\(^{a}\) the mixture was obtained from iso-octane/toluene and then EtOH.

General methods for preparation of pyrylium salts 5

Method A. A neat mixture of 4H-pyrane-4-one (1 mmol) and alkyl triolate \(6\) (1 mmol) was stirred at 60 °C for 1 h under Ar resulting in brown oil. The mixture was cooled to room temperature and used without further purification.

Method B. A modified Method A by using CH\(_2\)Cl\(_2\) (1 mL) as a solvent. After 1 h, the solvent was removed in vacuo and the product was used without further purification.

Method C. A modified Method B by conducting the reaction at 0 °C to prevent decomposition of the secondary alkyl triolate. \(^1\)H NMR data are provided in the ESI.†

General methods for preparation of alkyl triolates 6

Method A. Following a general method for alkyl triolates,\(^{20}\) to a vigorously stirred solution of triflic anhydride (1.2 mmol) in

This journal is © The Royal Society of Chemistry 2014
CH2Cl2 (15 mL) at 0 °C, a solution of pyridine (1 mmol) and primary alcohol (1 mmol) in CH2Cl2 (10 mL) was added dropwise over a 15 min period and the mixture was stirred for an additional 1 h at 0 °C. The solution was washed with ice-cold H2O, dried (Na2SO4) and evaporated to dryness to give the appropriate alkytriflate 6 as a colorless liquid that quickly began to darken. The resulting mixture was filtered through a cotton plug and used without further purification.

Method B. To a vigorously stirred mixture of a secondary alcohol (1 mmol) and pyridine (1 mmol) at −78 °C in CH2Cl2 (25 mL) was added dropwise triflic anhydride (1 mmol). The mixture was stirred for 10 min at −78 °C and then kept at 0 °C until the alcohol was consumed (by TLC). The mixture was washed with ice-cold water, dried (Na2SO4) and the solvent was removed in vacuo at 0 °C. The resulting triflate 6 was kept at 0 °C and quickly used in the next step. 1H NMR data are provided in the ESI.

Preparation of 1-decyl-12-(4-heptyloxyphenyl)-p-carborane (11[10]b)

A solution of 1-decyl-12-(4-hydroxyphenyl)-p-carborane (12[10], 125 mg, 0.318 mmol), heptyl tosylate (104 mg, 0.382 mmol), K2CO3 (132 mg, 0.956 mmol) and NBu4Br (10 mg, 0.032 mmol) in anhydrous CH2CN (5 mL) was refluxed overnight. The mixture was cooled down to room temperature and filtered. The residue was washed with CH2Cl2 (3 × 10 mL), dried (Na2SO4) and evaporated to dryness. The crude product was purified by column chromatography (hexane/CH2Cl2, 2 : 1) to give 100 mg of 11[10]b as a colorless liquid, which was crystallized from CH2CN containing a few drops of EtOAc at −80 °C. 1H NMR (CDCl3, 400 MHz) δ 0.88 (t, J = 7.1 Hz, 6H), 1.0–2.6 (br m, 10H), 1.12–1.42 (m, 24H), 1.64 (pseudo t, J = 8.1 Hz, 2H), 1.73 (quint, J = 6.6 Hz, 2H), 3.87 (t, J = 6.5 Hz, 2H), 6.65 (d, J = 9.0 Hz, 2H), 7.09 (t, J = 9.0 Hz, 2H); 11B NMR (CDCl3, 128 MHz) δ −12.3 (d, J, J = 164 Hz). Anal. calc’d for C25H50B10O: C, 63.25; H, 10.62. Found: C, 63.99; H, 10.73%.

1-Decyl-12-(4-methoxyphenyl)-p-carborane (11[10]e)

A solution of (4-methoxyphenyl)-p-carborane (11[10]e, 187 mg, 0.478 mmol) in CH2Cl2 (5 mL) was treated with BBr3 (360 mg, 1.44 mmol, 1.0 M in CH2Cl2) at 0 °C and the reaction was allowed to warm up to room temperature and stirred overnight. Water (10 mL) was added to the mixture and the organic layer was separated, dried (Na2SO4) and evaporated to dryness to give the crude product as a colorless film, which was purified by column chromatography (CH2Cl2 to give 145 mg (78% yield) of a white solid. The product was recrystallized at −80 °C from CH2CN containing a few drops of EtOAc and then EtOAc containing a few drops of hexane to give phenol 12[10]e as a colorless film: 1H NMR (CDCl3, 400 MHz) δ 0.88 (t, J = 7.1 Hz, 3H), 1.0–2.6 (br m, 10H), 1.10–1.30 (m, 16H), 1.64 (pseudo t, J = 8.1 Hz, 2H), 4.71 (s, 1H), 6.59 (d, J = 8.9 Hz, 2H), 7.06 (d, J = 8.8 Hz, 2H); 11B NMR (CDCl3, 128 MHz) δ −12.3 (d, J = 164 Hz). Anal. calc’d for C18H36B10O: C, 57.41; H, 9.64. Found: C, 57.18; H, 9.33%.

References

14 For details see the ESI.†