Functionalization of the \(\text{[closo-1-CB}_9\text{H}_{10}]^\text{−}\) Anion for the Construction of New Classes of Liquid Crystals

BRYAN RINGSTRAND† AND PIOTR KASZYNSKI*, †, ‡

† Organic Materials Research Group, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States, and ‡ Faculty of Chemistry, University of Łódź, Tamka 12, 91403 Łódź, Poland

CONSPECTUS

The \(\text{[closo-1-CB}_9\text{H}_{10}]^\text{−}\) anion is a member of an extensive family of \(\sigma\)-aromatic closo-boranes that possess impressive stability and functionalization characteristics. In contrast to its bigger, more extensively studied brother, the \(\text{[closo-1-CB}_11\text{H}_{12}]^\text{−}\) anion, convenient access to the \(\text{[closo-1-CB}_9\text{H}_{10}]^\text{−}\) anion has only been recently established, and researchers have only begun to develop and understand its fundamental chemistry.

The geometrical and electronic properties of the \(\text{[closo-1-CB}_9\text{H}_{10}]^\text{−}\) anion make it an attractive structural element of novel classes of either zwitterionic or ionic liquid crystals suitable for electro-optical and ion transport applications, respectively. Such materials require a 1,10-difunctionalized \(\text{[closo-1-CB}_9\text{H}_{10}]^\text{−}\) anion that permits for the formation of molecules of elongated shape. The covalent attachment of an onium fragment or the use of a counterion compensates for the negative charge. This Account highlights the progress made in the advancement and understanding of the fundamental chemistry of the \(\text{[closo-1-CB}_9\text{H}_{10}]^\text{−}\) anion. We also describe the development of 1,10-difunctionalized derivatives as key intermediates in the preparation of new classes of liquid crystalline materials.

We obtained the first isomerically pure 1,10-difunctionalized derivative of the \(\text{[closo-1-CB}_9\text{H}_{10}]^\text{−}\) anion, iodo acid \(\text{[closo-1-CB}_9\text{H}_8^\text{−1-COOH-10-I}]\), from decaborane through the Brellochs reaction. Functional group transformation of the C(1)-carboxyl group led to a 1-amino derivative and, subsequently, to a synthetically valuable 1-dinitrogen derivative. The latter exhibits reactivity typical for PhN\(_2^+\) and undergoes diazocoupling and Gomberg–Bachmann arylation reactions. The B(10)-iodine participated in Negishi alkylation and Buchwald–Hartwig amination reactions, leading to 10-hexyl and 10-amino carboxylic acids, respectively. We converted the 10-amino carboxylic acid to a 10-dinitrogen acid \(\text{[closo-1-CB}_9\text{H}_8^\text{−1-COOH-10-N}_2]\), which proved to be synthetically valuable in the preparation of 10-pyridinium and 10-sulfonium zwitterionic acids and their liquid crystalline esters. We investigated several intermediates using structural, spectroscopic, and kinetic methods.

Introduction

The discovery of polyhedral boron clusters was one of the most exciting developments in inorganic chemistry of the last century. These boron clusters are characterized by three-center two-electron bonds, which were described by William Lipscomb. Lipscomb’s discovery, for which he was awarded the Nobel Prize in 1976, revolutionized the way chemists understood chemical bonding.\(^1\) As a result of this unique bonding characteristic, certain boron clusters exhibit \(\sigma\)-aromaticity and are exceptionally stable chemically, electrochemically, and thermally.\(^2\) These properties opened up possibilities for the application of boron clusters in a variety of fields, such as treatment of nuclear waste and cancer, catalysis, and materials science.\(^3\)

214 * ACCOUNTS OF CHEMICAL RESEARCH * 214–225 * 2013 * Vol. 46, No. 2

Published on the Web 10/25/2012 www.pubs.acs.org/accounts
10.1021/ar300081b © 2012 American Chemical Society
The carboranes and the closo-borates have dominated the literature due to their availability and relative ease of functionalization. On the other hand, closo-monocarboranes, including the \([\text{closo-1-CB}_9\text{H}_{10}]^-\) (1) and \([\text{closo-1-CB}_{11}\text{H}_{12}]^-\) (2) anions (Figure 1), have garnered less attention.

The negative charge in anions 1 and 2 is delocalized, making the clusters non-nucleophilic and weakly coordinating anions. Critical for exploiting the properties of 1 and 2 is the established chemistry of both the carboranes and borates. Deprotonation of the C–H vertex affords a carboranyl anion capable of reacting with electrophiles. Conversely, the B–H vertices are subject to electrophilic substitution, leading to, for example, B-iodo derivatives, that have been used in Pd-catalyzed coupling reactions. Leading to, for example, B-iodo derivatives, that have been used in Pd-catalyzed coupling reactions.

Of the closo-monocarboranes 1 and 2, the \([\text{closo-1-CB}_{11}\text{H}_{12}]^-\) anion (2) has been thoroughly investigated, and as a result, its chemistry is more developed. On the other hand, the \([\text{closo-1-CB}_9\text{H}_{10}]^-\) anion (1) has been mostly unexplored due to poor accessibility. Anion 1 was discovered in 1971 by W. H. Knoth as a product of thermal comproportionation of the \([\text{nido-7-CB}_{10}\text{H}_{13}]^-\) anion. Other methods expanded on Knoth’s work, but the preparation of 1,10-difunctionalized species of anion 1 remained elusive. C-substituted derivatives were rare before 2000, and electrophilic monohalogenation was shown to occur solely at the 6-position.

This situation changed with development of the Brellochs reaction, which permitted for the synthesis of a variety of C(1) substituted derivatives of 1 and opened up new possibilities for studying the \([\text{closo-1-CB}_9]\) framework. According to Brellochs, the reaction of decaborane, \(\text{B}_{10}\text{H}_{14}\), with aldehydes in alkaline solution produces either \([\text{arachno-6-CB}_9\text{H}_{13}-6-R]^-\) (I) or \([\text{nido-6-CB}_9\text{H}_{11}-6-R]^-\) (II) derivatives (Scheme 1).

These species undergo oxidative closure of the \([\text{CB}_9]\) framework, giving \([\text{closo-2-CB}_9\text{H}_{9}-2-R]^-\) (III) derivatives, and subsequent thermal rearrangement of III provides the more thermodynamically stable \([\text{closo-1-CB}_9\text{H}_{9}-1-R]^-\) (IV) isomer. The Brellochs reaction works well with formaldehyde and electron deficient aldehydes.

Despite an increase in the number of \([\text{closo-1-CB}_9\text{H}_{10}]^-\) derivatives, 1,10-difunctionalized species were still practically unknown. Since electrophilic monosubstitution of anion 1 occurs nearly exclusively at the 6-position, functionalization of the 10-position posed a serious challenge. However, it was demonstrated that halogenation of \([\text{closo-2-CB}_9\text{H}_{9}-2-\text{Ph}]^-\) (III in Scheme 1) occurred regioselectively at the 7-position, which after thermal rearrangement gave a mixture of 1,10- and 1,6-disubstituted \([\text{closo-1-CB}_9]\) derivatives. Although \([\text{closo-1-CB}_9\text{H}_{9}-1-\text{Ph}-10-\text{I}]^-\) was isolated and its molecular structure established, a practical procedure for the preparation of this or other 1,10-disubstituted derivatives was not pursued. Such isomerically pure 1,10-disubstituted derivatives could be used in the synthesis of linear molecular systems and in our liquid crystals program in particular.

Liquid crystals are anisotropic fluids formed by anisometric molecules typically containing both a rigid core and flexible substituents, e.g. alkyl chains. One type of such anisometric molecules is elongated, rodlike (calamitic), represented in Figure 2. Typically, the molecular core contains cyclic elements, such as benzene ring, cyclohexane, bicyclo[2.2.2]octane, or a heterocycle substituted in the antipodal positions. The rigid core elements may be connected directly or linked through functional groups such as esters, imines, and azo or ethylene spaces. In such systems, liquid crystallinity appears as a balance between ordering forces.
of the rigid cores and disordering effects of the alkyl chains.

Rodlike molecules typically form nematic and smectic liquid crystalline phases (Figure 3). The nematic phase is the least organized phase, but it is the most widely employed in the liquid crystal display (LCD) industry. Nematic liquid crystals formed by polar anisometric molecules undergo reorientation of molecules in an electric field, changing the optical properties of the material. This electrooptical (EO) effect is fundamental to virtually all LCD technologies. The threshold voltage of the EO effect is approximately inversely proportional to the magnitude of the molecular dipole. Therefore, nematic liquid crystals and nematic phase-compatible additives with large longitudinal or transverse dipole moments are sought after for formulation of nematic materials for display applications.

Ion pairs of charged anisometric molecules may also form liquid crystalline phases. Such ionic liquid crystals (ILC) typically form smectic phases and often exhibit high ionic conductivity, making them attractive electrolytes for solid-state batteries and dye-sensitized solar cells. The vast ionic conductivity, making them attractive electrolytes for solid-state batteries and dye-sensitized solar cells. The vast (ILC) typically form smectic phases and often exhibit high mesogenicity, such as pyridinium, with a small counterion makes them attractive electrolytes for solid-state batteries and dye-sensitized solar cells. The vast majority of ILC are comprised of an organic cation that drives solid-state batteries and dye-sensitized solar cells. The vast majority of ILC are comprised of an organic cation that drives solid-state batteries and dye-sensitized solar cells.

Despite the potential of the \([\text{closo}-1-\text{CB}_9\text{H}_{10}]^-\) anion (1) as a structural element of new classes of liquid crystals, understanding of its fundamental chemistry and availability of 1,10-difunctionalized derivatives were lacking. This review will highlight the development of the fundamental chemistry of anion 1 and its application as a structural element of new liquid crystalline materials.

The First Isomerically Pure 1,10-Disubstituted \([\text{closo}-1-\text{CB}_9]\) Cluster. We envisioned 1,10-disubstituted iodo acid \([\text{closo}-1-\text{CB}_9\text{H}_{10}-1-\text{COOH}-1-\text{I}]^-\) (3) as a general precursor to compounds V–VII (Figure 4). The B(10) iodine provides a means to introduce alkyl, aryl, or amino functionality via Pd-catalyzed coupling reactions. The C(11) carboxyl in 3 offers another convenient synthetic handle, that can be converted to esters or an amino group using classical organic synthetic methods. The amino group at either the C(1) or B(10) position can be transformed into a quinuclidine ring or synthetically valuable dinitrogen derivatives.

The iodo acid 3 was prepared from \([\text{closo}-2-\text{CB}_9\text{H}_{9}-2-\text{COOH}]^-\) (4), obtained according to the Brellochs method. Iodination of 4 with N-iodosuccinimide (NIS) gave 7-ido derivative 5, which was thermolyzed, giving a mixture of iodo acids 3 and 6. Isomerically pure iodo acid 3 was obtained by crystallization (Scheme 2).

Transformations of \([\text{closo}-1-\text{CB}_9\text{H}_9-1-\text{COOH}-1-\text{I}]^-\). With iodo acid 3 available in multigram quantities and 10% overall yield from B(10)H$_4$, synthetic transformations of the carboxyl group and iodine at positions C(1) and B(10), respectively, to an amino group in the context of accessing structures V–VII were investigated. Thus, the C(1) carboxyl...
From [closo-1-CB$_9$H$_{10}$]$^-$/C$_0^+$ to Liquid Crystals

Ringstrand and Kaszynski

was converted into an amino group using a modified Curtius rearrangement, via tert-butyl carbamate 7, providing [closo-1-CB$_9$H$_9$-1-NH$_2$-10-I]$^-$/C$_0^+$(8) (Scheme 3).

Initial details of this transformation were developed for the parent acid [closo-1-CB$_9$H$_9$-1-COOH]$^-$/C$_0^+$ (9), giving [closo-1-CB$_9$H$_9$-1-NH$_2$]$^-$/C$_0^+$ (10-C$_1$). Using excess lithium hexamethyldisilazane (LiHMDS) as the ammonia equivalent and 2-(dicyclohexylphosphino)biphenyl as the phosphine ligand, the ratio of amino acid 11 to parent acid 9, a deiodination byproduct, was as high as 5:1 (Scheme 4). Using the same conditions, the 6-iodo acid 6 was converted to 6-amino acid 12 (Scheme 5). Experiments demonstrated that the amination is substantially more difficult for the {CB$_9$} cluster than for aromatic halides.

Transformations at the B(10) position began with the Pd(0)-catalyzed Buchwald–Hartwig amination of iodo acid 3. Using excess lithium hexamethyldisilazane (LiHMDS) as the ammonia equivalent and 2-(dicyclohexylphosphino)biphenyl as the phosphine ligand, the ratio of amino acid 11 to parent acid 9, a deiodination byproduct, was as high as 5:1 (Scheme 4).

The iodine in 3 was also replaced with an alkyl group via the standard Negishi coupling, providing, e.g., hexyl derivative 13 (Scheme 6). Similarly, alkylation of iodo amine 8 by typical Kumada coupling gave hexyl amine 14 as the sole product (Scheme 6).

N$_2$$^+$ Derivatives of the [closo-1-CB$_9$H$_{10}$]$^-$/C$_0^+$ Cluster. With access to both C(1) and B(10) amines, we focused on the preparation of apical dinitrogen derivatives and their reactions with nucleophiles. Diazotization of [closo-1-CB$_9$H$_9$-1-N$_2$-10-R]$^-$/C$_0^+$ (8, R = I; 10-C$_1$, R = H) was performed in aqueous AcOH, giving [closo-1-CB$_9$H$_9$-1-N$_2$-10-R]$^-$/C$_0^+$ as a white precipitate (Scheme 7).

Diazotization of amino acid 11 was surprisingly difficult, and reaction under the conditions used for the C(1) amines 8 and 10-C$_1$ led to full recovery of unreacted 11. Amino-closo-borates are known to be unusually basic, which prompted us to explore the diazotization under basic conditions. In fact, diazotization of 11 and preparation of stable dinitrogen acid [closo-1-CB$_9$H$_9$-1-COOH-10-N$_2$] (17) was achieved with excess [NO]$^+$ [PF$_6$]$^-$ in MeCN containing pyridine (Scheme 8).

The two types of dinitrogen derivatives, the C(1)–N$_2$$^+$ (such as 16-C$_1$) and B(10)–N$_2$$^+$ (such as 17), have different thermal stabilities. While the C(1) derivatives decompose...
slowly in the solid state and more rapidly in solutions at ambient temperature, the B(10) derivatives are far more stable, and their thermal stability resembles that of dinitrogen derivatives of \([\text{closo-B}_{10}H_{10}]^2\). Temperature-dependent NMR kinetic measurements revealed a first order process with activation parameters \(\Delta H^\ddagger = 38.4 \pm 0.8 \text{ kcal mol}^{-1}\) and \(\Delta S^\ddagger = 44.5 \pm 2.5 \text{ cal mol}^{-1} \text{ K}^{-1}\) in MeCN for \([\text{closo-1-CB}_{9}H_{10}-1-N_2](16)\) and \(\Delta H^\ddagger = 33.9 \pm 1.4 \text{ kcal mol}^{-1}\) and \(\Delta S^\ddagger = 10 \pm 3.5 \text{ cal mol}^{-1} \text{ K}^{-1}\) for methyl ester \([\text{closo-1-CB}_{9}H_{8}-1-COOCH}_{3}(18)\) in PhCN. The rate-determining step in both reactions is the heterolytic cleavage of the \(N_2^+\)-boron cluster bond, leading to the formation of an electrophilic ylide: carbonium \(19\) from dinitrogen \(16\) (Scheme 9), and boronium from dinitrogen \(18\). Subsequent reaction of the ylide with a nucleophilic solvent leads to a trapping product, such as \(20\).

MP2-level computational analysis of the parent dinitrogen derivatives \(16\) and \([\text{closo-1-CB}_{9}H_{8}-1-N_2](16)\) demonstrated that the B(10) isomer is more thermodynamically stable by \(\Delta H = 52.4 \text{ kcal/mol}\) and has a higher endotherm by 7.8 kcal mol\(^{-1}\) for methyl ester \([\text{closo-1-CB}_{9}H_{8}-1-COOMe}(18)\) in PhCN. Consequently, the boron ylide \(19\) is more thermodynamically stable than the C(1) analogue \(19\) by 44.6 kcal mol\(^{-1}\) and is less electrophilic, according to the energies of the LUMO (Figure 5).

The reactivity of \([\text{closo-1-CB}_{9}H_{8}-1-N_2](16)\) was investigated with three types of nucleophiles: sulfur compounds, pyridine, and activated arenes. The reactions were conducted to understand the formation of sulfonium derivatives through a masked mercaptan, the formation of 1-pyridinium derivatives, and demonstration of a classical diazo coupling.

Reaction of \(16\) with \(N,N\)-dimethylthioformamide at ambient temperature gave zwitterion \(21\), while reactions with phenolate anion and aniline provided azophenol \(22\) and azoaniline \(23\) as sole products (Scheme 10). Alkylation of protected mercaptan \(21\) with 1,5-dibromopentane gave sulfonium derivative \(24\) (Scheme 10).

The reaction of \(16\) with pyridine was most interesting. Thus, reaction in neat pyridine at ambient temperature gave a mixture of at least four products, instead of the anticipated \(25\). The major component of the reaction mixture was identified as 2-isomer \(25\), while two minor more polar components were identified as \(25\) and \(25\) (Figure 6). At higher temperatures the composition of the mixture changed and the 1-isomer \(25\) constituted 17% of the mixture. Interestingly, a reaction of \(16\) with a 4% solution of pyridine in \(CH_2Cl_2\) gave \([\text{closo-1-CB}_{9}H_{8}-1-N_2](16)\) , while a reaction with a 4% solution of pyridine in benzene gave \([\text{closo-1-CB}_{9}H_{8}-1-Ph}\) as the major product. In both reactions, iso-mer \(25\) and \(25\) were formed in small quantities.
The observed distribution of products suggests a radical pathway, which is consistent with the Comberg–Bachmann radical arylation reaction. The process is initiated with single electron transfer (SET) from pyridine, a soft nucleophile, to \(16-C1\) (Scheme 11). After loss of \(N_2\), the resulting radical anion \(26\) undergoes addition to the heteroaromatic ring, giving all four isomers \(25\), among which \(25b\) dominates. For a mechanism involving the carbonium ylide \(19-C1\) as the intermediate, only one isomer, \(25a\), is expected, as has been observed for dinitrogen derivatives of \([\text{closo-}B_{10}H_{10}]\). This rationale is consistent with a temperature-dependent distribution of products: at low temperature the SET mechanism operates nearly exclusively, yielding solely the C-isomers, while at high temperature the heterolysis of the C(1)–N \(_2\) bond in \(16-C1\) is activated, giving rise to measurable quantities of the N-isomer \(25a\) (Figure 6).

Additional support for the radical mechanism was provided by electrochemical analysis of \(16-C1\). The reduction of \(16-C1\) is irreversible and more cathodic than that of PhN\(_2\)\(_2^+\) by only 0.38 V, rendering \(16-C1\) similarly susceptible to SET from electron donors.

A similar mechanism involving radical ion \(26\) was postulated for the reaction of \(16-C1\) with other soft nucleophiles, such as Me\(_2\)S and Me\(_2\)NCHS, while with MeCN, a poor electron donor, only the heterolytic mechanism operates involving the ylide \(19-C1\).

Using the transformations developed for the parent compound \(16-C1\), several intermediates for liquid crystalline materials were prepared starting from iodo dinitrogen derivative \(15\). This includes iodo derivatives \(27\) and \(28\), which upon Negishi coupling with alkylzinc gave the 10-alkyl derivatives \(29\) and \(30[n]\), respectively (Scheme 12).

Similar studies were conducted for acid \([\text{closo-}B_{10}H_{10}]\) (17), which was reacted with pyridine, sulfur compounds, and alcohol. Again, the reactions were conducted to prepare sulfonium and 1-pyridinium zwitterions at the B(10) position and to introduce a heteroatom link between the alkyl group and the B(10) position. Thus, reactions of dinitrogen acid 17 in neat pyridine, 4-heptyloxypyridine, N,N-dimethylthioformamide, and pentanol gave pyridinium acids \(31a\) and \(31b\), masked mercaptan \(32\), and ionic pentyloxy acid \(33\), respectively, as the sole products (Scheme 13). With CH\(_2\)N\(_2\), the dinitrogen acid \(17\) gave methyl ester \(18\).

The reaction of acid \(17\) with pyridine differs from that of the C(1) dinitrogen derivative \(16-C1\). While the reaction of \(16-C1\) proceeded at ambient temperature and involved a radical anion, the reaction of dinitrogen acid \(17\) with pyridine required higher temperature and the formation of \(31\), as the sole product, indicates domination by the heterolytic pathway involving a boronium ylide intermediate. Thus, the reactivity of \(17\) is similar to that of dinitrogen derivatives of the \([\text{closo-}B_{10}H_{10}]\) cluster with pyridine, which also show enhanced thermal stability and reactivity implying involvement of a boronium ylide. These characteristics of \(17\) are consistent with a significantly cathodic and reversible reduction potential of anion \(17^-\) (\(E_{1/2} = -1.21\) V vs SCE), which is apparently too low for effective SET from an electron donor to trigger the radical process.

The synthetic utility of the protected mercaptan \(32\) was demonstrated by formation of sulfonium acids \(34[n]\) as shown in Scheme 14.

Interestingly, the sulfonium acids \(34[3]\) and \(34[5]\) and their esters exist as equilibrium mixtures of configurational isomers \(trans\) and \(cis\) in a ratio of about 4:1 in solutions at ambient temperature, while only the \(trans\) isomer is observed for the series \(28\) and \(30[n]\), in which the sulfonium fragment is substituted at the C(1) carbon. Temperature-dependent
From [closo-1-CB9H10]− to Liquid Crystals

Ringstrø and Kaszynski

1H NMR studies demonstrated that the equilibrium between the two isomers establishes quickly above ambient temperature, and yielded a difference in enthalpy, $\Delta H = 0.83 \pm 0.04 \text{ kcal mol}^{-1}$, and entropy, $\Delta S = 0.2 \pm 0.1 \text{ cal mol}^{-1} \text{ K}^{-1}$, between 35[5]c-cis and 35[5]c-trans (Figure 7).32 Computational results for model compounds 24-C1 and 24-B10 are consistent with experimental observations.32 The calculations demonstrated that 24-B10 has a low enthalpy of activation $\Delta H^\ddagger = 24.2 \text{ kcal mol}^{-1}$, which is consistent with relatively fast isomerization observed for 35[5]c, while ΔH^\ddagger for 24-C1 is higher by about 7 kcal/mol. Calculations also demonstrated that the low cis/trans equilibrium constant $K = 2$ for 24-B10 (experimental value for 35[5]c is 3.8) at 298 K is due to a relatively long C(1)−S bond ($d_{C(1)−S} = 1.854 \text{ Å}$). In contrast, the C(1)−S bond in 24-C1 is shorter by nearly 0.1 Å, and consequently, the axial conformer is less favorable ($K = 42$). It is noteworthy that the molecular dipole moment is substantial (Table 1) and oriented along the long molecular axis, rendering both 24-C1 and 24-B10 attractive structural elements for polar liquid crystals for display applications.

We also investigated the generation and reactivity of the dinitrogen acid [closo-1-CB9H10-1-COOH-6-N2] (36) starting from 6-amino acid [closo-1-CB9H8-1-COOH-6-NH3] (12).25 Experiments using conditions for the analogous reaction of the 10-amino acid 11 indicated that the dinitrogen carboxylate anion 36 is unstable under the reaction conditions and decomposes to a 6-boronium ylide, which is trapped with the solvent. Diazotization of a mixture of amino acids 12 and 11 conducted in neat pyridine with [NO][BF₄] at −20 °C gave 6-pyridinium acid 37a as the sole product, and trace amounts of dinitrogen acid 17 formed from 11 (Scheme 15).25 The reaction was extended to other heterocyclic bases. Diazotization of a mixture of amino acids 12 and 11 in
4-methoxypyridine gave 6-onium acid 37b in high yield. In contrast, reactions in 2-picoline and quinoline gave incomplete conversion of 12 and low yields of the 6-onium products 37c and 37d, and no diazotization of the 10-amino acid 11 was observed. These results were attributed to the interference of the Me group in NO⁺ transfer from 2-picoline and lower basicity of quinoline as compared to pyridine.

The lack of diazotization of 10-amino acid 11 in less basic quinoline and marginal reaction of 6-amino acid 12 are consistent with the calculated lower acidity of the protonated parent B(10)—amine 10-B10 than that of B(6)—amine 10-B6 (Table 2). The calculations for a set of isomeric dinitrogen derivatives 16 are also consistent with the observed significantly lower thermal stability of the 6-dinitrogen carboxylate 36, relative to the 10-dinitrogen isomer 17⁺, and with the general order of stability of dinitrogen derivatives of 1: B(10)—N₂ > C(1)—N₂ > B(6)—N₂. Thus, the MP2-level results predict a nearly 13 kcal/mol lower ΔG₂⁹⁸ for dediazotization of 16-B6 and formation of 6-ylide 19-B6, than for the 10-dinitrogen isomer 16-B10. Interestingly, the thermal stability of the 2-dinitrogen derivative 16-B2 is predicted to be similar to that of the isolable stable

TABLE 1. Molecular Parameters for 24

<table>
<thead>
<tr>
<th>compd</th>
<th>ΔH°/(kcal mol⁻¹)</th>
<th>ΔG₂⁹⁸/(kcal mol⁻¹)</th>
<th>K₂⁹⁸</th>
<th>d₃-Å</th>
<th>µ/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-C1, X = C, Y = BH</td>
<td>31.2</td>
<td>2.2</td>
<td>1/2</td>
<td>1.754</td>
<td>14.4</td>
</tr>
<tr>
<td>24-B10, X = B, Y = CH</td>
<td>24.2</td>
<td>0.4</td>
<td>1/2</td>
<td>1.856</td>
<td>8.75</td>
</tr>
</tbody>
</table>
| aMP2/6-31G(d,p) level calculations with B3LYP/6-31G(d,p) thermodynamic corrections. bDistance between the S and the cage’s C or B atoms in the axial conformer. cDipole moment of the equatorial conformer.

SCHEME 15. Diazotization Reactions of Amino Acids 11 and 12 in Heterocyclic Bases

TABLE 2. Selected Thermodynamic Parameters for Isomeric Derivatives of 1

<table>
<thead>
<tr>
<th>X</th>
<th>parameter</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃⁺</td>
<td>pKₐ</td>
<td>22.8</td>
<td>18.1</td>
<td>16.5</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂⁺</td>
<td>ΔG₂⁹⁸ kcal/mol</td>
<td>30.9</td>
<td>18.1</td>
<td>23.2</td>
<td>22.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ (ylide)</td>
<td>E_LUMO /eV</td>
<td>0.21</td>
<td>0.40</td>
<td>-0.06</td>
<td>-1.57</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aReference 25.
1-dinitrogen derivative 16-C1. The reactivity of the resulting ylides 19 varies, and judging from the energy of the LUMO, the least electrophilic ylide is 19-B6, while the most is 19-C1.

Molecular Structures and Conformational Properties of the [closo-1-CB9H10]− Derivatives. Molecular structures of several derivatives, including dinitrogen derivatives 1533 and 1724, pyridinium 25b,33 31a24 and 37a25 sulfonium acid 34[0]24, azo aniline 23,33 and quinuclidinium 38,26 were established by single crystal XRD studies and compared to DFT computational results. Two examples of XRD analysis with indicated pertinent interatomic distances are shown in Figure 8.

Analysis of the [closo-1-CB9] cage geometry for a number of structures indicates that the pyramidalization of the B(10) apex is greater for more electronegative onium substituents. The X−B(10) distance is smaller, and consequently, the B(10)−C(1) separation is markedly shorter in dinitrogen acid 17 (dB(10)...C(1) = 3.429 Å), with the most electronegative substituent N2⁺ than in the sulfonium 34[0] (dB(10)...C(1) = 3.478 Å) and 31a pyridinium (dB(10)...C(1) = 3.471 Å) analogs.24

Conformational properties and, hence, the rigidity and dynamic molecular shape impact mesogenic properties. Both experimental and theoretical analyses indicate that both the C(1)-carboxyl and B(10)-pyridine ring adopt a staggered orientation with respect to the [closo-1-CB9] cage in the conformational minimum. As a consequence, the ideal dihedral angle between the planes of the two substituents is 45° and all conformers of acid 31 are chiral (Figure 9).

DFT results demonstrated that the thian ring at the B(10) and C(1) positions prefers staggered conformations relative to the cage in which the sulfur lone pair eclipses the B−B or C−B bond. Consequently, the acid 34[0] has a C₃-symmetric conformational minimum, although in the crystal structure the sulfonium ring is twisted by up to 30° away from the ideal staggered position. DFT analysis of the B(10) alkyl and alkoxy derivatives 13 and 33 demonstrated that the substituents are staggered and eclipsed relative to the cage, respectively, resulting in chiral conformers in the former and a C₃-symmetric molecule for acid 33.

Liquid Crystals Derived from the [closo-1-CB9H10]− Cluster. The developed chemistry of the [closo-1-CB9H10]− anion (1) permitted the preparation of the first examples of two new classes of materials: polar zwitterionic (V and VI) and anion-driven ionic liquid crystals (VII). The polar materials V studied thus far, C(1)-sulfonium 30[n] and C(1)-quinuclidinium 38, do not form liquid crystalline phases (Chart I).26,29 They exhibit high melting points and limited solubility in other liquid crystalline materials; nevertheless, they significantly increase the dielectric anisotropy, Δε, of the host.26 For example, compound 38, with the calculated longitudinal dipole moment component μ_l = 15.9 D, exhibits a large value of Δε = 70 ± 1 extrapolated to infinite dilution in a nematic host, and a relatively high virtual clearing temperature, [T nausea] = 139 ± 1.26

Polar materials VI, such as pyridinium esters 39 and sulfonium esters 35[n], were more promising than materials V (Chart II). Esters 39 have lower melting points, have greater
compatibility with liquid crystalline hosts, and form nematic phases above 100 °C. Analysis of their dielectric properties in dilute nematic solutions revealed extrapolated dielectric anisotropy, $\Delta \epsilon$, typically around 40, but a record high value of $\Delta \epsilon = 113$ was measured for cyanophenol ester 39e.31,32

Esters 39 permitted for the first time the effect of a dipole moment on the stability of the nematic phase to be examined experimentally.31 This was accomplished by comparing polar and nonpolar isosteric pairs of the [closo-1-CB$_9$H$_{10}$]$^-$ anion and isoelectronic p-carborane, [closo-1,10-C$_2$B$_8$H$_{10}$]. Replacement of a polar B$^-$N$^+$ fragment in 39 with a nonpolar C–C fragment provided compounds 40 with drastically different dipole moments (calculated $\Delta \mu \approx 12$ D for all pairs), but with essentially identical geometrical and conformational properties (Figure 10).

The results for pairs of compounds such as 39c and 40c (Figure 10) demonstrated that a longitudinal dipole moment's effect on phase properties strongly depends on the nature of the substituent distant from the zwitterion center.31 Thus, esters of cycloalkanols 39a/40a and 39b/40b with the increased longitudinal dipole have higher phase stability by about 55 K. A much smaller increase in T_{NI} of only 9 K is observed for the analogous pentyphenol esters 39c/40c, and even moderate nematic phase destabilization is found for the cyanophenol esters 39e/40e, despite the same difference in the molecular dipole moment. These results suggest close intermolecular contact and dielectric screening of the dipoles.

Esters 35[n] derived from sulfonium acids represent examples of a new class of shape-shifting nematic material, where the molecule can exist in two different shapes (linear or bent) due to facile isomerization at the sulfur center.29,32 This results in improved solubility in the nematic hosts and lower transition temperatures T_{NI}, when compared to esters of pyridinium acid 31b.

Ion pairs with anisometric anions derived from hexyl acid 13 or phenol 29 exhibit liquid crystalline phases and represent the first examples of anion-driven ILCs (type VII). Typically, these materials possess the characteristic smectic A phase (41–43, Chart III), commonly exhibited by ILC, and occasionally a soft crystalline phase (41).22,34 Surprisingly, compound 43 exhibits a nematic phase, which is rarely observed in ILCs.34 Binary mixture studies demonstrated that ILCs VII are miscible with nonionic LCs, which is promising for formulation of materials for metal ion conduction.

Interestingly, replacement of the connecting X = CH$_2$ group in ionic liquid crystal 43 with an oxygen atom in 44 resulted in significant destabilization of the nematic and, to a greater extent, SmA phases, as established from binary mixture studies in the [closo-1-CB$_{11}$] analogue of 43.35 DFT modeling of both anions suggests that the destabilization results from the
difference in charge distribution rather than conformational changes.

Further examples of polar and ionic liquid crystals derived from the [closo-1-CB9H10]− anion are being investigated in our laboratory with the focus on greater compatibility with nematic materials and ion pairs with the Li+ cation.

Summary
This Account presented a snapshot of the rapid development of the fundamental chemistry of the [closo-1-CB9H10]− anion (I). Three key advancements in the fundamental chemistry of 1 were highlighted: (i) the multigram scale preparation of the isomerically pure 1,10-disubstituted derivative, iodo acid 3, (ii) functional group transformations at the C(1) position, and (iii) functional group transformations at the B(10) position. Transformations of iodo acid 3 have led to other important intermediates, such as dinitrogen derivatives 15 and 17. These developments have opened up exciting possibilities for application of anion 1 as a structural element in a variety of molecular and polymeric materials, including the new classes of polar (V and VI) and ionic liquid crystals (VII).

Biographical Information
Bryan Ringstrand received his Ph.D. degree in 2011 at Vanderbilt University, where he worked with Prof. Piotr Kaszynski. He is currently a postdoctoral appointee at Argonne National Laboratory.

Piotr Kaszynski received his M.S. degree from Warsaw Polytechnic (1985) and subsequently his Ph.D. from University of Texas (1991). After a postdoctoral appointment at Caltech, he joined the faculty of Vanderbilt University (1993) and University of Łódź (2010). His research interests are in the areas of molecular materials, liquid crystals, boron clusters, stable radicals, and strained polycyclic systems.

Footnotes
*To whom correspondence should be addressed: e-mail, piotr.kaszynski@vanderbilt.edu. The authors declare no competing financial interest. Dedicated to the memory of Professor Lee J. Todd (1936–2011).

This project was supported by NSF grants (DMR-0606317 and DMR-0907542).

References
23 Knott, W. H. Chemistry of Boranes. XXVI.1 Inner Diazonium Salts 1,10-B10H8(N2)2-, B10D8(N2)2 and B10H8(N2)2-. J. Am. Chem. Soc. 1966, 88, 935–939.

