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ScienceDirect
Identifying host cell metabolic phenotypes that promote high

recombinant protein titer is a major goal of the biotech industry.
13C metabolic flux analysis (MFA) provides a rigorous approach

to quantify these metabolic phenotypes by applying isotope

tracers to map the flow of carbon through intracellular

metabolic pathways. Recent advances in tracer theory and

measurements are enabling more information to be extracted

from 13C labeling experiments. Sustained development of

publicly available software tools and standardization of

experimental workflows is simultaneously encouraging

increased adoption of 13C MFA within the biotech research

community. A number of recent 13C MFA studies have

identified increased citric acid cycle and pentose phosphate

pathway fluxes as consistent markers of high recombinant

protein expression, both in mammalian and microbial hosts.

Further work is needed to determine whether redirecting flux

into these pathways can effectively enhance protein titers while

maintaining acceptable glycan profiles.
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Introduction
Industrial bioprocesses place high demands on the inter-

mediary metabolism of host cells to meet the biosynthetic

requirements for maximal growth and protein expression.
13C metabolic flux analysis (MFA) has become the pre-

mier approach to quantitatively assess the metabolic

phenotypes of cultured cells and is now playing a growing

role in host cell engineering and bioprocess optimization.

Although transcriptomics [1] and proteomics [2] can be

used to infer metabolic pathway alterations indirectly from

changes in enzyme expression, this can be misleading
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since metabolic enzymes are largely regulated by allo-

steric feedback and substrate availability, and mRNA or

protein abundances often do not correlate strongly with

pathway fluxes [3,4]. On the other hand, 13C MFA relies

on least-squares regression of direct metabolite measure-

ments (isotope labeling patterns and extracellular

exchange rates) to determine the adjustable flux

parameters in a mathematical model of cellular metab-

olism (Figure 1). The resulting output is a comprehensive

flux map that depicts the flow of carbon throughout

intracellular metabolism under the experimental con-

ditions of interest. Recent theoretical and experimental

advances are pushing the boundaries of 13C MFA to new

heights of precision and flexibility, while increased avail-

ability of public software tools is streamlining MFA

workflows and providing improved access to these tech-

nologies within the biotech research community. In this

article, we provide an overview of these advances and

highlight some important findings that have been

obtained through the application of 13C MFA to industrial

expression hosts. We also point to emerging areas where
13C MFA is likely to provide new insights for improving

the quantity and quality of recombinant proteins pro-

duced by these hosts.

Recent advances in 13C MFA tools and
methodologies
Optimal experiment design (OED)

The earliest 13C MFA experiments involved feeding

either [1-13C] or [U-13C6]glucose as a single tracer. Nowa-

days, the increased precision obtainable from combining

multiple tracers, whether fed simultaneously or in parallel

experiments, is widely understood and accepted. How-

ever, it is not always appreciated that the optimal tracer

combination can depend strongly on the network top-

ology and the available measurements, which vary from

system to system. This implies that there is a need to

tailor the labeling strategy to the system of interest rather

than naı̈vely following prior conventions. Furthermore,

the use of 2H or 15N tracers to probe redox or nitrogen

metabolism, respectively, has proven to be a powerful

complement to 13C MFA. For example, the Metallo and

Rabinowitz labs have recently applied an arsenal of

different 2H and 13C tracers to assess the contributions

from multiple pathways to compartment-specific

NADPH production in the cytosol and mitochondria of

mammalian cells [5��,6��].

The first systematic treatment of optimal design of iso-

tope labeling experiments was introduced by Möllney
www.sciencedirect.com
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Typical workflow of 13C MFA studies. (Step 1) Development of a mathematical model comprising a system of mass balances and isotopomer

balances on all metabolites in the biochemical reaction network is the initial step of MFA. (Step 2) This model can be applied to perform

simulation studies and optimal experiment design (OED) computations to select tracer/measurement combinations that maximize flux resolution.

(Step 3) A series of isotope labeling experiments is then performed by introducing the selected tracer(s) into culture and collecting cell and media

samples at various time points during the growth phase of interest. (Step 4) MS and/or NMR is used to analyze the isotope labeling of target

metabolites in these samples, while a parallel set of biochemical analyses is applied to profile the exchange rates of extracellular metabolites, as

well as cell growth and product formation rates. (Step 5) These data sets are regressed using either stationary 13C MFA or INST-MFA, depending

on whether the labeling reaches equilibrium, which enables the adjustable flux parameters in the model to be uniquely determined. A series of

statistical tests can be performed to assess the goodness-of-fit of the model and to calculate uncertainties for each of the estimated parameters.

Recent theoretical advances and improvements in the availability of MFA software tools have enhanced the efficiency of this workflow, especially

steps 1,2, and 5. At the same time, better analytical methods for obtaining isotopomer measurements have provided increased flexibility and

precision in steps 3 and 4.
et al. [7]. Their approach was based on the classical OED

formulation of minimizing a scalar objective function

computed from the flux covariance matrix of a reference

flux map. Recent studies have applied more sophisticated

OED algorithms to tailor 13C MFA experiments to mam-

malian cell cultures, which pose a greater challenge due to

their use of complex media containing multiple carbon

sources. For example, Metallo et al. [8] examined flux

identifiability of a carcinoma cell line using a variety of

single tracers. Rather than using the parameter covariance

matrix as a local estimate of flux uncertainty, they applied

the parameter continuation method of Antoniewicz et al.
www.sciencedirect.com 
[9] to compute accurate nonlinear confidence intervals on

all fluxes. They identified [1,2-13C2]glucose and

[U-13C5]glutamine as the most useful single tracers for

flux determination in glycolysis and citric acid cycle

(CAC) pathways, respectively. Walther et al. [10] later

extended this approach to examine mixtures of tracers

identified using a genetic algorithm.

Another exciting development was the introduction of

the EMU basis vector (EMU-BV) approach, which can be

used to express the labeling of any metabolite in the

network as a linear combination of labeled substrate
Current Opinion in Biotechnology 2014, 30:238–245
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atoms [11�]. This allows the influence of fluxes on the

isotopomer measurements to be decoupled from sub-

strate labeling, and thereby enables a fully a priori
approach to tracer selection that does not depend on

the choice of a reference flux map. Crown et al. [12]

subsequently applied the EMU-BV method to identify

two novel tracers for quantifying oxidative pentose phos-

phate pathway (OPPP) flux and anaplerotic pyruvate

carboxylase flux using a metabolic model of HEK-293

cell metabolism. The EMU-BV approach also suggests

that maximal flux information can be obtained by inte-

grating data sets from multiple parallel tracer exper-

iments, each of which is designed to elucidate specific

reactions in the network [13]. Several recent studies have

applied parallel labeling strategies to reduce the time of

tracer experiments in mammalian cell cultures [14��], to

validate assumptions of biochemical network models [15],

and to enhance precision of 13C flux estimates [16]. These

and other advances in OED of isotope tracer studies have

been recently reviewed [17].

Isotopically nonstationary (INST) and dynamic MFA

Typically, 13C MFA relies on assumptions of both meta-

bolic and isotopic steady state. If metabolism is steady but

isotope labeling is not allowed to fully equilibrate, iso-

topically nonstationary MFA (INST-MFA) can be used to

estimate fluxes [18,19]. This requires solution of ordinary

differential equations (ODEs) that describe the time-

dependent labeling of network metabolites, while itera-

tively adjusting the flux and pool size parameters to match

the transient labeling measurements. If measurements

are obtained under both isotopically and metabolically

nonstationary conditions, a fully dynamic modeling

approach is required to estimate fluxes. This has been

referred to as dynamic MFA (DMFA), but the majority of

prior DMFA studies have not attempted to utilize 13C

labeling information [20]. Aside from a few proof-of-

concept studies [21,22] or isolated examples that assume

quasi-stationary labeling [23–25], there are currently

no established methods for performing fully dynamic
13C MFA.

13C INST-MFA holds a number of unique advantages

over approaches that rely solely upon steady-state iso-

topomer measurements. First, 13C INST-MFA can be

applied to estimate fluxes in autotrophic systems, which

consume only single-carbon substrates [26,27]. This task

is impossible with stationary 13C MFA due to the fact that

all carbon atoms in the system are derived from the same

source and therefore will become uniformly labeled at

steady state. Second, INST-MFA is ideally suited to

systems that label slowly due to the presence of large

intermediate pools or pathway bottlenecks. This

approach not only avoids the additional time and cost

of feeding isotope tracers over extended periods [28,29],

but is critically necessary in cases where metabolic steady

state is short-lived [30,31]. As a result, INST-MFA is
Current Opinion in Biotechnology 2014, 30:238–245 
expected to become an indispensible tool for extending
13C MFA approaches to studies of mammalian systems

and industrial bioprocesses. Finally, INST-MFA pro-

vides increased measurement sensitivity to estimate

reversible exchange fluxes and metabolite pool sizes

[32,33], which represents a potential framework for inte-

grating metabolomic analysis with 13C MFA.

New measurement strategies

In addition to theoretical advances, the field of 13C MFA

is also rapidly expanding due to new isotopomer measure-

ment capabilities. Traditionally, these measurements

have been obtained from mass spectrometry (MS) [34]

or nuclear magnetic resonance (NMR) [35] analysis of

amino acid, fatty acid, or sugar constituents of cellular

biomass. More recently, attention has shifted to the

analysis of soluble metabolites that quickly approach

isotopic steady state and enable dynamic changes in

metabolism to be readily tracked. Furthermore, appli-

cation of tandem MS/MS instruments is enabling

enhanced accuracy [36] and increased position-specific

labeling information [37–39] to be obtained from mass

isotopomer analysis, which can significantly improve the

precision of flux estimates obtained from 13C MFA [40].

Others have shown how careful selection of target ana-

lytes that are biosynthetically derived from different

organelles [41] or from different cell/tissue types

[42,43] can be used to resolve compartment-specific

fluxes that reflect cellular or subcellular metabolic hetero-

geneity. MFA approaches that leverage hyperpolarized
13C substrates for real-time NMR imaging of labeling

dynamics [44] or ultra-high resolution MS instrumenta-

tion [45,46] have also been recently developed. These

and other advances in isotopomer measurement capabili-

ties are paving the way for more sophisticated 13C MFA

approaches that provide increased precision, robustness,

and flexibility.

New software tools

Unlike other ‘omics’ approaches, 13C MFA requires least-

squares regression of raw measurements to an appropriate

metabolic network model. This imposes a significant

computational burden that has previously restricted

MFA studies to a small number of specialist labs. How-

ever, many of these groups have now made their in-house

software tools publicly available, beginning with

13CFLUX in 2001 [47]. This was followed by several

other software packages that were similarly developed to

facilitate steady-state 13C MFA calculations (Table 1).

Only recently, however, have public software tools

become available to automate 13C INST-MFA. The

INCA [48��] and OpenMebius [49] packages now provide

the flexibility to perform either steady-state MFA or

INST-MFA using a single modeling platform. Further-

more, INCA provides capabilities to perform tracer simu-

lations, OED calculations, and constraint-based pathway

analyses. In addition, a variety of software packages are
www.sciencedirect.com
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Table 1

List of publicly available software tools for 13C MFA

Name Capabilities License Accessibility Ref.

13C MFA

13CFLUX2 Steady-state MFA Free non-commercial (NC) UNIX/Linux [75]

FIA Steady-state MFA Open source Cross-platform [76]

FiatFlux Metabolic flux ratio analysis Free academic, Requires Matlab Cross-platform [77]

INCA Steady-state and INST-MFA Free NC, Requires Matlab Cross-platform [48��]

influx_s Steady-state MFA Open source Cross-platform [78]

Metran Steady-state MFA Free NC, Requires Matlab Cross-platform [79]

OpenFLUX Steady-state MFA Open source, Requires Matlab Cross-platform [80]

OpenMebius Steady-state and INST-MFA Open source, Requires Matlab Cross-platform [49]

Data processing

ETA Regression of extracellular exchange rates Free, Requires Matlab Cross-platform [81]

FFC Identify chemical composition of

MS fragment ions

Open source Linux or Windows [82]

iMS2Flux Processing and correction of MS data Open source Cross-platform [83]

IsoCor Correction of MS data Open source Cross-platform [84]

IsoDesign Optimize tracer combinations Open source Cross-platform [51]

MetaboliteDetector GC–MS peak detection, identification,

alignment, and integration

Open source Linux or Windows [85]

NTFD Non-targeted detection of isotopically

enriched metabolites

Open source Linux or Windows [50�]

Data visualization

Cytoscape Network visualization Open source Cross-platform [86]

Omix Network visualization Free ‘Light Edition’, Fee to upgrade Cross-platform [87]
now available to automate the ancillary data processing

and visualization steps associated with MFA (Table 1).

Other tools have been developed that use non-targeted

profiling to discover downstream metabolites that are

enriched by a given tracer [50�] or to optimize tracer

selection [51] as a prelude to further 13C MFA studies.

Although an experienced pathway modeler is still

required to design and interpret MFA experiments, the

availability of public software packages that streamline

the data analysis workflow and reduce the burden of

developing custom software code is making these tech-

niques increasingly available to the broader scientific

community. This is also leading to increased standardiz-

ation of MFA practices, as the tools and methodologies

become more widely established [52,53]. However, the

capabilities of public software packages still lag somewhat

behind state-of-the-art 13C MFA approaches. For

example, tools for handling tandem MS/MS data [54]

or ultra-high resolution MS data [55] have only recently

begun to appear in the MFA literature.

Applications to recombinant protein
manufacturing
13C MFA of industrial expression hosts
13C MFA is an important tool for guiding host cell

engineering efforts, as well as media and bioprocess

optimization [56]. Although some of the earliest 13C

MFA studies were performed on antibody-producing

hybridoma cultures nearly two decades ago [57,58],

there has been a recent resurgence of efforts aimed at

applying modern 13C MFA approaches to these and other
www.sciencedirect.com 
industrial expression hosts. In particular, several recent

studies have examined how metabolic fluxes of Chinese

hamster ovary (CHO) cells respond to different stages of

fed-batch culture [14��,59��,60], different nutrient feeds

[61], inducible expression of a recombinant protein [62],

or expression of anti-apoptotic factors [63�] (Table 2).

These studies have consistently observed that CHO cells

rely more heavily on CAC flux and oxidative phosphor-

ylation to supply energy when the cell-specific production

rate (CSPR) of recombinant protein is highest (Figure 2)

[59��,60–62]. This often involves a shift from lactate

production to lactate consumption during the later stages

of fed-batch growth when CSPR typically peaks

[14��,59��,63�]. Furthermore, several studies have

reported that enhanced OPPP flux coincides with the

transition from growth phase to production (or stationary)

phase [14��,59��,60,63�]. Similar phenotypes have been

observed in microbial hosts such as Pichia pastoris
[64,65��], Bacillus subtilis [66], and Aspergillus niger [67�],
which typically upregulate CAC and/or OPPP flux in

response to increased recombinant protein expression.

It is still unclear, however, whether these metabolic

adaptations are actually driving increased CSPR or

whether they are simply side effects of the decrease in

growth rate that typically coincides with an increase in

recombinant protein expression. Also, cellular mechan-

isms that regulate the ‘lactate shift’ in mammalian cells

are still being elucidated [68]. Few studies have

attempted to directly manipulate flux into these pathways

based on the findings of 13C MFA. As a result, further

work is needed to determine whether 13C MFA can
Current Opinion in Biotechnology 2014, 30:238–245
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Table 2

List of recent 13C MFA studies using industrial expression hosts

Year Host Product Culture Significant findings Ref.

Mammalian hosts

2014 CHO None Batch Expression of Bcl-2D anti-apoptotic factor enhanced pyruvate entry to CAC and

increased lactate consumption during stationary phase.

[63�]

2014 CHO mAb Fed-batch High-glutamine feed resulted in improved VCD and protein titer. Low-glutamine feed

enhanced CAC flux and CSPR.

[61]

2013 CHO mAb Fed-batch Induction of protein expression was associated with increased relative partitioning of

pyruvate into the CAC.

[62]

2013 CHO mAb Fed-batch Glycolytic flux to lactate dominated during the initial growth phase. Culture shifted to

lactate uptake and enhanced CAC and OPPP during production phase.

[59��]

2013 CHO None Fed-batch Relative partitioning of flux to OPPP and CAC was increased during stationary phase,

although total carbon uptake was greatly reduced relative to growth phase.

[14��]

2011 CHO mAb Fed-batch Nearly all glucose carbon was directed to OPPP and CAC during late non-growth phase. [60]

2010 CHO mAb Perfusion Approximately equal partitioning of carbon between glycolysis/OPPP and lactate/CAC. [88]

Microbial hosts

2014 P. pastoris Enzyme Batch CAC flux was elevated in production strain relative to parental strain. [65��]

2014 B. subtilis Enzyme Batch OPPP and CAC fluxes were elevated under conditions where CSPR was highest. [66]

2014 S. pombe Enzyme Chemostat Substituting glycerol for glucose and supplementing acetate to culture medium

enhanced CSPR while increasing CAC flux and NADPH production.

[89]

2012 A. niger Enzyme Batch NADPH supplied by OPPP and malic enzyme was elevated in production strain but

CAC flux was decreased relative to parental strain.

[67�]

2010 P. pastoris Enzyme Fed-batch CAC flux was elevated in production strain relative to parental strain. [64]

Figure 2
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Metabolic phenotypes during growth and production phases of fed-

batch cultures. Exponentially growing cultures exhibit high glycolytic

flux and rely on elevated glutamine consumption to fuel mitochondrial

metabolism. This results in lactate and ammonium accumulation in the

culture medium. High-titer cultures shift to oxidizing glucose primarily

in the OPPP and CAC pathways during production phase, which

provides increased NADPH and ATP yields and reduced accumulation

of inhibitory byproducts. In many cases, these cultures will consume

lactate that was previously produced during the growth phase. Low-

titer cultures typically fail to achieve this metabolic shift and continue

to exhibit a glycolytic phenotype even after growth has slowed and

recombinant protein production has peaked. (Arrow size is scaled in

proportion to carbon flux. Dotted arrow indicates negligible flux.)
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suggest valid metabolic engineering targets for enhancing

recombinant protein production or reducing byproduct

accumulation in industrial bioprocesses.

From quantity to quality improvements

There is now a proliferation of success stories in the

biotechnology industry where recombinant protein titers

have been improved beyond the 5 g/L level. While

further improvements in product titers are still achievable

and would provide additional manufacturing capacity

and cost savings, a broader view of cell culture engineer-

ing has now firmly taken root that encompasses improved

product quality and consistency, in addition to yield

improvements. There has been much effort to under-

stand and engineer protein glycosylation pathways [69],

but few studies have directly examined how rewiring of

central carbon metabolism impacts the supply of nucleo-

tide-sugars and other precursors needed for synthesis of

complex glycans [70]. It is likely that future 13C MFA

experiments and metabolic engineering studies will place

equal emphasis on understanding the role of central

metabolism in controlling both the quality as well as

the shear amount of product that can be manufactured

by a recombinant host. Indeed, Burleigh et al. [71]

recently applied stoichiometric MFA to investigate

how changes in CAC and glycolytic fluxes correlate with

changes in product glycosylation by CHO cells. Other

studies have applied 13C isotopomer analysis to deter-

mine the relative contributions of different biosynthetic

pathways to the production of N-acetyl-glucosamine [46]

or to assess the turnover of nucleotide-sugars required for

protein glycosylation in cancer cells [72]. These studies
www.sciencedirect.com
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are leading the way toward a more systematic treatment of

glycosylation pathways that relies on 13C tracing and

MFA to examine how host cell metabolism impacts

recombinant protein quality.

Conclusions
The capabilities of 13C MFA are rapidly expanding due to

improved theoretical approaches for designing and mod-

eling isotope labeling experiments. In particular, INST-

MFA experiments are already conducted in a fraction of

the time required for steady-state MFA and could soon

become the basis for high-throughput MFA approaches

[32,73]. These applications will gradually push the

boundaries of INST-MFA toward fully dynamic 13C

MFA [74]. At the same time, new MS and NMR

approaches for obtaining isotopomer measurements are

allowing more information to be extracted from 13C

labeling experiments. This progress is enabling research-

ers to adapt flux analysis methodologies to a wider range

of experimental systems or to tailor their studies to

selectively monitor specific pathways of interest. Further-

more, the increased availability of public software tools

for processing, analyzing, and visualizing MFA data sets is

reducing the computational barriers that have limited

access to these approaches in the past. As a result, there

has been a surge of new 13C MFA studies examining

industrial expression hosts in the last several years. These

studies point to enhanced OPPP and CAC fluxes as

consistent markers of high protein productivity in both

mammalian and microbial hosts. However, much uncer-

tainty remains as to whether and how these pathways can

be engineered to drive improved protein expression, and

whether these manipulations will have important side

effects on protein quality. These questions remain at the

forefront of cell culture research, and their answers will

depend heavily on continued development and appli-

cation of 13C MFA methodologies as an important com-

ponent of the cyclic ‘model-build-test-learn’ metabolic

engineering paradigm.
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