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Identifying host cell metabolic phenotypes that promote high
recombinant protein titer is a major goal of the biotech industry.
3C metabolic flux analysis (MFA) provides a rigorous approach
to quantify these metabolic phenotypes by applying isotope
tracers to map the flow of carbon through intracellular
metabolic pathways. Recent advances in tracer theory and
measurements are enabling more information to be extracted
from 13C labeling experiments. Sustained development of
publicly available software tools and standardization of
experimental workflows is simultaneously encouraging
increased adoption of *C MFA within the biotech research
community. A number of recent '3C MFA studies have
identified increased citric acid cycle and pentose phosphate
pathway fluxes as consistent markers of high recombinant
protein expression, both in mammalian and microbial hosts.
Further work is needed to determine whether redirecting flux
into these pathways can effectively enhance protein titers while
maintaining acceptable glycan profiles.
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Introduction

Industrial bioprocesses place high demands on the inter-
mediary metabolism of host cells to meet the biosynthetic
requirements for maximal growth and protein expression.
C metabolic flux analysis (MFA) has become the pre-
mier approach to quantitatively assess the metabolic
phenotypes of cultured cells and is now playing a growing
role in host cell engineering and bioprocess optimization.
Although transcriptomics [1] and proteomics [2] can be
used to infer metabolic pathway alterations izdirectly from
changes in enzyme expression, this can be misleading
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since metabolic enzymes are largely regulated by allo-
steric feedback and substrate availability, and mRNA or
protein abundances often do not correlate strongly with
pathway fluxes [3,4]. On the other hand, 13C MFA relies
on least-squares regression of direct metabolite measure-
ments (isotope labeling patterns and extracellular
exchange rates) to determine the adjustable flux
parameters in a mathematical model of cellular metab-
olism (Figure 1). The resulting output is a comprehensive
flux map that depicts the flow of carbon throughout
intracellular metabolism under the experimental con-
ditions of interest. Recent theoretical and experimental
advances are pushing the boundaries of ">C MFA to new
heights of precision and flexibility, while increased avail-
ability of public software tools is streamlining MFA
workflows and providing improved access to these tech-
nologies within the biotech research community. In this
article, we provide an overview of these advances and
highlight some important findings that have been
obtained through the application of *C MFA to industrial
expression hosts. We also point to emerging areas where
3C MFA is likely to provide new insights for improving
the quantity and quality of recombinant proteins pro-
duced by these hosts.

Recent advances in '*C MFA tools and
methodologies

Optimal experiment design (OED)

The earliest >C MFA experiments involved feeding
either [1-°C] or [U—13C6]glucosc as a single tracer. Nowa-
days, the increased precision obtainable from combining
multiple tracers, whether fed simultaneously or in parallel
experiments, is widely understood and accepted. How-
ever, it is not always appreciated that the optimal tracer
combination can depend strongly on the network top-
ology and the available measurements, which vary from
system to system. This implies that there is a need to
tailor the labeling strategy to the system of interest rather
than naively following prior conventions. Furthermore,
the use of “H or N tracers to probe redox or nitrogen
metabolism, respectively, has proven to be a powerful
complement to *C MFA. For example, the Metallo and
Rabinowitz labs have recently applied an arsenal of
different “H and "C tracers to assess the contributions
from multiple pathways to compartment-specific
NADPH production in the cytosol and mitochondria of
mammalian cells [5°°,6°°].

The first systematic treatment of optimal design of iso-
tope labeling experiments was introduced by Méllney
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Figure 1
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Typical workflow of 'C MFA studies. (Step 1) Development of a mathematical model comprising a system of mass balances and isotopomer
balances on all metabolites in the biochemical reaction network is the initial step of MFA. (Step 2) This model can be applied to perform

simulation studies and optimal experiment design (OED) computations to select tracer/measurement combinations that maximize flux resolution.
(Step 3) A series of isotope labeling experiments is then performed by introducing the selected tracer(s) into culture and collecting cell and media
samples at various time points during the growth phase of interest. (Step 4) MS and/or NMR is used to analyze the isotope labeling of target
metabolites in these samples, while a parallel set of biochemical analyses is applied to profile the exchange rates of extracellular metabolites, as
well as cell growth and product formation rates. (Step 5) These data sets are regressed using either stationary '*C MFA or INST-MFA, depending
on whether the labeling reaches equilibrium, which enables the adjustable flux parameters in the model to be uniquely determined. A series of
statistical tests can be performed to assess the goodness-of-fit of the model and to calculate uncertainties for each of the estimated parameters.
Recent theoretical advances and improvements in the availability of MFA software tools have enhanced the efficiency of this workflow, especially

steps 1,2, and 5. At the same time, better analytical methods for obtaining isotopomer measurements have provided increased flexibility and

precision in steps 3 and 4.

et al. [7]. Their approach was based on the classical OED
formulation of minimizing a scalar objective function
computed from the flux covariance matrix of a reference
flux map. Recent studies have applied more sophisticated
OED algorithms to tailor >C MFA experiments to mam-
malian cell cultures, which pose a greater challenge due to
their use of complex media containing multiple carbon
sources. For example, Metallo ¢7 a/. [8] examined flux
identifiability of a carcinoma cell line using a variety of
single tracers. Rather than using the parameter covariance
matrix as a local estimate of flux uncertainty, they applied
the parameter continuation method of Antoniewicz ¢z al.

[9] to compute accurate nonlinear confidence intervals on
all fluxes. They identified [1,2—13C2]glucose and
[U-"*Cs]glutamine as the most useful single tracers for
flux determination in glycolysis and citric acid cycle
(CAC) pathways, respectively. Walther er @/. [10] later
extended this approach to examine mixtures of tracers
identified using a genetic algorithm.

Another exciting development was the introduction of
the EMU basis vector (EMU-BV) approach, which can be
used to express the labeling of any metabolite in the
network as a linear combination of labeled substrate
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atoms [11°]. This allows the influence of fluxes on the
isotopomer measurements to be decoupled from sub-
strate labeling, and thereby enables a fully a priori
approach to tracer selection that does not depend on
the choice of a reference flux map. Crown ¢z al. [12]
subsequently applied the EMU-BV method to identify
two novel tracers for quantifying oxidative pentose phos-
phate pathway (OPPP) flux and anaplerotic pyruvate
carboxylase flux using a metabolic model of HEK-293
cell metabolism. The EMU-BV approach also suggests
that maximal flux information can be obtained by inte-
grating data sets from multiple parallel tracer exper-
iments, each of which is designed to elucidate specific
reactions in the network [13]. Several recent studies have
applied parallel labeling strategies to reduce the time of
tracer experiments in mammalian cell cultures [14°°], to
validate assumptions of biochemical network models [15],
and to enhance precision of 13C flux estimates [16]. These
and other advances in OED of isotope tracer studies have
been recently reviewed [17].

Isotopically nonstationary (INST) and dynamic MFA
Typically, *C MFA relies on assumptions of both meta-
bolic and isotopic steady state. If metabolism is steady but
isotope labeling is not allowed to fully equilibrate, iso-
topically nonstationary MFA (INST-MFA) can be used to
estimate fluxes [18,19]. This requires solution of ordinary
differential equations (ODEs) that describe the time-
dependent labeling of network metabolites, while itera-
tively adjusting the flux and pool size parameters to match
the transient labeling measurements. If measurements
are obtained under both isotopically @zd metabolically
nonstationary conditions, a fully dynamic modeling
approach is required to estimate fluxes. This has been
referred to as dynamic MFA (DMFA), but the majority of
prior DMFA studies have not attempted to utilize *C
labeling information [20]. Aside from a few proof-of-
concept studies [21,22] or isolated examples that assume
quasi-stationary labeling [23-25], there are currently
no established methods for performing fully dynamic
BC MFA.

1C INST-MFA holds a number of unique advantages
over approaches that rely solely upon steady-state iso-
topomer measurements. First, "°C INST-MFA can be
applied to estimate fluxes in autotrophic systems, which
consume only single-carbon substrates [26,27]. This task
is impossible with stationary *C MFA due to the fact that
all carbon atoms in the system are derived from the same
source and therefore will become uniformly labeled at
steady state. Second, INST-MFA is ideally suited to
systems that label slowly due to the presence of large
intermediate pools or pathway bottlenecks. This
approach not only avoids the additional time and cost
of feeding isotope tracers over extended periods [28,29],
but is critically necessary in cases where metabolic steady
state is short-lived [30,31]. As a result, INST-MFA is

expected to become an indispensible tool for extending
3C MFA approaches to studies of mammalian systems
and industrial bioprocesses. Finally, INST-MFA pro-
vides increased measurement sensitivity to estimate
reversible exchange fluxes and metabolite pool sizes
[32,33], which represents a potential framework for inte-
grating metabolomic analysis with '>C MFA.

New measurement strategies

In addition to theoretical advances, the field of °C MFA
is also rapidly expanding due to new isotopomer measure-
ment capabilities. Traditionally, these measurements
have been obtained from mass spectrometry (MS) [34]
or nuclear magnetic resonance (NMR) [35] analysis of
amino acid, fatty acid, or sugar constituents of cellular
biomass. More recently, attention has shifted to the
analysis of soluble metabolites that quickly approach
isotopic steady state and enable dynamic changes in
metabolism to be readily tracked. Furthermore, appli-
cation of tandem MS/MS instruments is enabling
enhanced accuracy [36] and increased position-specific
labeling information [37-39] to be obtained from mass
isotopomer analysis, which can significantly improve the
precision of flux estimates obtained from 3G MFA [40].
Others have shown how careful selection of target ana-
lytes that are biosynthetically derived from different
organelles [41] or from different cell/tissue types
[42,43] can be used to resolve compartment-specific
fluxes that reflect cellular or subcellular metabolic hetero-
geneity. MFA approaches that leverage hyperpolarized
3¢ substrates for real-time NMR imaging of labeling
dynamics [44] or ultra-high resolution MS instrumenta-
tion [45,46] have also been recently developed. These
and other advances in isotopomer measurement capabili-
ties are paving the way for more sophisticated *C MFA
approaches that provide increased precision, robustness,
and flexibility.

New software tools

Unlike other ‘omics’ approaches, ">C MFA requires least-
squares regression of raw measurements to an appropriate
metabolic network model. This imposes a significant
computational burden that has previously restricted
MFA studies to a small number of specialist labs. How-
ever, many of these groups have now made their in-house
software tools publicly available, beginning with
13CFLUX in 2001 [47]. This was followed by several
other software packages that were similarly developed to
facilitate steady-state 13C MFA calculations (‘T'able 1).
Only recently, however, have public software tools
become available to automate *C INST-MFA. The
INCA [48°°] and OpenMebius [49] packages now provide
the flexibility to perform either steady-state MFA or
INST-MFA using a single modeling platform. Further-
more, INCA provides capabilities to perform tracer simu-
lations, OED calculations, and constraint-based pathway
analyses. In addition, a variety of software packages are
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List of publicly available software tools for '°C MFA

Name Capabilities License Accessibility Ref.

5C MFA

13CFLUX2 Steady-state MFA Free non-commercial (NC) UNIX/Linux [75]

FIA Steady-state MFA Open source Cross-platform [76]

FiatFlux Metabolic flux ratio analysis Free academic, Requires Matlab Cross-platform [77]

INCA Steady-state and INST-MFA Free NC, Requires Matlab Cross-platform [48°°]

influx_s Steady-state MFA Open source Cross-platform [78]

Metran Steady-state MFA Free NC, Requires Matlab Cross-platform [79]

OpenFLUX Steady-state MFA Open source, Requires Matlab Cross-platform [80]

OpenMebius Steady-state and INST-MFA Open source, Requires Matlab Cross-platform [49]

Data processing

ETA Regression of extracellular exchange rates Free, Requires Matlab Cross-platform [81]

FFC Identify chemical composition of Open source Linux or Windows [82]
MS fragment ions

iIMS2Flux Processing and correction of MS data Open source Cross-platform [83]

IsoCor Correction of MS data Open source Cross-platform [84]

IsoDesign Optimize tracer combinations Open source Cross-platform [51]

MetaboliteDetector GC-MS peak detection, identification, Open source Linux or Windows [85]
alignment, and integration

NTFD Non-targeted detection of isotopically Open source Linux or Windows [507]
enriched metabolites

Data visualization

Cytoscape Network visualization Open source Cross-platform [86]

Omix Network visualization Free ‘Light Edition’, Fee to upgrade Cross-platform [87]

now available to automate the ancillary data processing
and visualization steps associated with MFA (Table 1).
Other tools have been developed that use non-targeted
profiling to discover downstream metabolites that are
enriched by a given tracer [50°] or to optimize tracer
selection [51] as a prelude to further *C MFA studies.
Although an experienced pathway modeler is still
required to design and interpret MFA experiments, the
availability of public software packages that streamline
the data analysis workflow and reduce the burden of
developing custom software code is making these tech-
niques increasingly available to the broader scientific
community. This is also leading to increased standardiz-
ation of MFA practices, as the tools and methodologies
become more widely established [52,53]. However, the
capabilities of public software packages still lag somewhat
behind state-of-the-art *C MFA approaches. For
example, tools for handling tandem MS/MS data [54]
or ultra-high resolution MS data [55] have only recently
begun to appear in the MFA literature.

Applications to recombinant protein
manufacturing

13C MFA of industrial expression hosts

C MFA is an important tool for guiding host cell
engineering efforts, as well as media and bioprocess
optimization [56]. Although some of the earliest *C
MFA studies were performed on antibody-producing
hybridoma cultures nearly two decades ago [57,58],
there has been a recent resurgence of efforts aimed at
applying modern "*C MFA approaches to these and other

industrial expression hosts. In particular, several recent
studies have examined how metabolic fluxes of Chinese
hamster ovary (CHO) cells respond to different stages of
fed-batch culture [14°°,59°°,60], different nutrient feeds
[61], inducible expression of a recombinant protein [62],
or expression of anti-apoptotic factors [63°] (Table 2).
These studies have consistently observed that CHO cells
rely more heavily on CAC flux and oxidative phosphor-
ylation to supply energy when the cell-specific production
rate (CSPR) of recombinant protein is highest (Figure 2)
[59°°,60-62]. This often involves a shift from lactate
production to lactate consumption during the later stages
of fed-batch growth when CSPR typically peaks
[14°°,59°°,63°]. Furthermore, several studies have
reported that enhanced OPPP flux coincides with the
transition from growth phase to production (or stationary)
phase [14°°,59°°,60,63°]. Similar phenotypes have been
observed in microbial hosts such as Pickia pastoris
[64,65°°1, Bacillus subrilis [66], and Aspergillus niger [67°],
which typically upregulate CAC and/for OPPP flux in
response to increased recombinant protein expression.
It is still unclear, however, whether these metabolic
adaptations are actually driving increased CSPR or
whether they are simply side effects of the decrease in
growth rate that typically coincides with an increase in
recombinant protein expression. Also, cellular mechan-
isms that regulate the ‘lactate shift’ in mammalian cells
are still being elucidated [68]. Few studies have
attempted to directly manipulate flux into these pathways
based on the findings of *C MFA. As a result, further
work is needed to determine whether ">C MFA can
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Table 2

List of recent '>*C MFA studies using industrial expression hosts

Year Host Product Culture Significant findings Ref.

Mammalian hosts

2014 CHO None Batch Expression of Bcl-2A anti-apoptotic factor enhanced pyruvate entry to CAC and [63°]

increased lactate consumption during stationary phase.

2014 CHO mAb Fed-batch High-glutamine feed resulted in improved VCD and protein titer. Low-glutamine feed [61]

enhanced CAC flux and CSPR.

2013 CHO mAb Fed-batch Induction of protein expression was associated with increased relative partitioning of  [62]

pyruvate into the CAC.

2013 CHO mAb Fed-batch Glycolytic flux to lactate dominated during the initial growth phase. Culture shifted to ~ [59°°]

lactate uptake and enhanced CAC and OPPP during production phase.

2013 CHO None Fed-batch Relative partitioning of flux to OPPP and CAC was increased during stationary phase, [14°°]

although total carbon uptake was greatly reduced relative to growth phase.

2011 CHO mAb Fed-batch Nearly all glucose carbon was directed to OPPP and CAC during late non-growth phase. [60]

2010 CHO mAb Perfusion Approximately equal partitioning of carbon between glycolysis/OPPP and lactate/CAC.  [88]

Microbial hosts

2014  P. pastoris Enzyme  Batch CAC flux was elevated in production strain relative to parental strain. [65°7]

2014  B. subtilis Enzyme  Batch OPPP and CAC fluxes were elevated under conditions where CSPR was highest. [66]

2014  S. pombe Enzyme  Chemostat  Substituting glycerol for glucose and supplementing acetate to culture medium [89]

enhanced CSPR while increasing CAC flux and NADPH production.

2012  A. niger Enzyme  Batch NADPH supplied by OPPP and malic enzyme was elevated in production strain but [67°]

CAC flux was decreased relative to parental strain.

2010 P. pastoris Enzyme  Fed-batch CAC flux was elevated in production strain relative to parental strain. [64]
suggest valid metabolic engineering targets for enhancing
recombinant protein production or reducing byproduct
accumulation in industrial bioprocesses.

Figure 2
From quantity to quality improvements
There is now a proliferation of success stories in the
Glucose Glucose . . . . .
biotechnology industry where recombinant protein titers
L have been improved beyond the 5 g/l. level. While
(Growth Phase| BEaE Production Phase] further improvements in I.)rloduct titers are st1.11 achleval?lc
. and would provide additional manufacturing capacity

Pyruvate «—— Lactate

'€= Glutamine

<+— Glutamine
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Metabolic phenotypes during growth and production phases of fed-
batch cultures. Exponentially growing cultures exhibit high glycolytic
flux and rely on elevated glutamine consumption to fuel mitochondrial
metabolism. This results in lactate and ammonium accumulation in the
culture medium. High-titer cultures shift to oxidizing glucose primarily
in the OPPP and CAC pathways during production phase, which
provides increased NADPH and ATP yields and reduced accumulation
of inhibitory byproducts. In many cases, these cultures will consume
lactate that was previously produced during the growth phase. Low-
titer cultures typically fail to achieve this metabolic shift and continue
to exhibit a glycolytic phenotype even after growth has slowed and
recombinant protein production has peaked. (Arrow size is scaled in
proportion to carbon flux. Dotted arrow indicates negligible flux.)

and cost savings, a broader view of cell culture engineer-
ing has now firmly taken root that encompasses improved
product quality and consistency, in addition to yield
improvements. There has been much effort to under-
stand and engineer protein glycosylation pathways [69],
but few studies have directly examined how rewiring of
central carbon metabolism impacts the supply of nucleo-
tide-sugars and other precursors needed for synthesis of
complex glycans [70]. It is likely that future *C MFA
experiments and metabolic engineering studies will place
equal emphasis on understanding the role of central
metabolism in controlling both the quality as well as
the shear amount of product that can be manufactured
by a recombinant host. Indeed, Burleigh e a/. [71]
recently applied stoichiometric MFA to investigate
how changes in CAC and glycolytic fluxes correlate with
changes in product glycosylation by CHO cells. Other
studies have applied "*C isotopomer analysis to deter-
mine the relative contributions of different biosynthetic
pathways to the production of N-acetyl-glucosamine [46]
or to assess the turnover of nucleotide-sugars required for
protein glycosylation in cancer cells [72]. These studies
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are leading the way toward a more systematic treatment of
glycosylation pathways that relies on *C tracing and
MFA to examine how host cell metabolism impacts
recombinant protein quality.

Conclusions

The capabilities of '>C MFA are rapidly expanding due to
improved theoretical approaches for designing and mod-
eling isotope labeling experiments. In particular, INST-
MFA experiments are already conducted in a fraction of
the time required for steady-state MFA and could soon
become the basis for high-throughput MFA approaches
[32,73]. These applications will gradually push the
boundaries of INST-MFA toward fully dynamic *C
MFA [74]. At the same time, new MS and NMR
approaches for obtaining isotopomer measurements are
allowing more information to be extracted from *C
labeling experiments. This progress is enabling research-
ers to adapt flux analysis methodologies to a wider range
of experimental systems or to tailor their studies to
selectively monitor specific pathways of interest. Further-
more, the increased availability of public software tools
for processing, analyzing, and visualizing MFA data sets is
reducing the computational barriers that have limited
access to these approaches in the past. As a result, there
has been a surge of new *C MFA studies examining
industrial expression hosts in the last several years. These
studies point to enhanced OPPP and CAC fluxes as
consistent markers of high protein productivity in both
mammalian and microbial hosts. However, much uncer-
tainty remains as to whether and how these pathways can
be engineered to drive improved protein expression, and
whether these manipulations will have important side
effects on protein quality. These questions remain at the
forefront of cell culture research, and their answers will
depend heavily on continued development and appli-
cation of *C MFA methodologies as an important com-
ponent of the cyclic ‘model-build-test-learn’ metabolic
engineering paradigm.
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