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1. Introduction

Metabolic engineering involves the adjustment of metabolic
and regulatory processes to improve desired cellular behav-
iors, such as the production of proteins and chemicals. Since
cellular metabolic and regulatory networks are often large
and complex, the construction and analysis of computational
models of these networks can be useful for identifying
current network states and evaluating the effects of net-
work perturbations on desired phenotypes. This special
issue includes papers that illustrate how computational
approaches can be used in metabolic engineering. Here, we
provide a brief overview of several established computational
approaches that can be used to aid in the engineering of
metabolic networks, while describing some of the exciting
recent advances in these fields.

2. Descriptive Approaches for Identifying
Intracellular Metabolic States

A variety of experimental measurements can be used to
quantify the state of metabolic and regulatory networks,
including flux analysis, gene expression, protein expression,
metabolite concentration, enzyme activity, uptake and secre-
tion rates, and transcription factor-DNA binding assays.
Computational models and approaches can be useful for
integrating and analyzing such datasets to quantify metabolic
fluxes and uncover their regulatory properties.

2.1. 13C Labeling Experiments and Metabolic Flux Analysis.
The ability to quantitatively map intracellular fluxes using

metabolic flux analysis (MFA) is critical for identifying path-
way bottlenecks and elucidating network regulation in bio-
logical systems, especially in engineered cells with nonnative
metabolic capacities [1, 2]. 13C-MFA experiments involve
feeding isotopically labeled substrates to cells, tissues, or
whole organisms and subsequently measuring the patterns of
isotope incorporation that occur in intracellular metabolites
or secreted products [3]. Both mass spectrometry (MS) and
nuclear magnetic resonance (NMR) can be used to quantify
the relative abundance of different “isotopomers” (i.e.,
isotope isomers) associated with each measured biomolecule.
Because different metabolic pathways often give rise to
distinct isotope labeling patterns, isotopomer abundances
can be used to infer the relative fluxes through these pathways
[4]. As a result, isotopomer measurements obtained from MS
or NMR, in combination with direct measurements of extra-
cellular uptake or secretion rates, can be computationally
analyzed to reconstruct comprehensive flux maps describing
intracellular metabolism, which is the essence of MFA. A
complete flux map is thus the phenotypic equivalent of the
transcriptional map obtained from DNA microarrays, and
tracking flux changes in response to targeted perturbations
can provide important information about the distribution of
kinetic and regulatory controls in metabolism [5].

The standard approach for computing a flux map
involves a nonlinear least-squares regression to minimize
the lack-of-fit between (i) experimentally measured and (ii)
computationally simulated data. The latter are derived by
solving a “forward problem”, which involves solving the
isotopomer and metabolite balance equations for a particular
set of flux parameters in order to calculate the relative
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abundance of all observable metabolite labeling patterns.
Because the forward problem must be solved up to hundreds
or even thousands of times to achieve an optimal fit, a
great deal of effort has been placed on developing improved
strategies to simulate the isotopic labeling produced by a
particular network state. The Elementary Metabolite Unit
(EMU) approach was developed by Antoniewicz et al.
[6] to address precisely this problem. Through a novel
decomposition of the isotopomer network, the algorithm
systematically identifies the minimal set of variables required
to simulate the available labeling measurements. The EMU
approach has achieved 10-fold reductions in the system sizes
required to simulate 13C labeling in both medium- and large-
scale networks [6, 7]. While these gains are impressive, the
true power of the EMU approach is in its ability to unlock
entirely new isotope labeling strategies that were previously
outside the reach of computational tractability. For instance,
the number of isotopomer variables required to simulate
mixed 13C, 18O, and 2H labeling in even a small-scale
network of gluconeogenesis (24 reactions, 14 intracellular
metabolites) climbs into the millions, while the number of
EMU balances is in the mere hundreds [6].

Typically, MFA relies on the assumption of both
metabolic and isotopic steady state. Achieving this situation
experimentally involves (i) equilibrating the system in a
stable metabolic state, (ii) introducing an isotopically labeled
substrate without perturbing the metabolic steady state,
(iii) allowing the system to establish a new isotopic steady
state that reflects the underlying metabolic fluxes, and
(iv) measuring isotopic labeling in the fully equilibrated
system. Depending on the relative speed of metabolic and
isotopic dynamics, however, other experimental scenarios
can be envisioned. If the isotopic labeling responds quickly
to any metabolic changes in the system, quasi-stationary
MFA can be applied to obtain a series of snapshots that
describe the variation in network fluxes over time [8, 9].
Conversely, if labeling occurs slowly but metabolism is
maintained in a fixed state, isotopically nonstationary MFA
(INST-MFA) can be used to estimate fluxes [10]. Finally,
when measurements are obtained under both metabolically
and isotopically nonstationary conditions, a fully dynamic
modeling approach is required to estimate fluxes [11].
In the current issue, Lequeux et al. (G. Lequeux et al.
“Dynamic metabolic flux analysis demonstrated on cultures
where the limiting substrate is changed from carbon to
nitrogen and vice versa”) have taken a different dynamic
MFA approach by obtaining transient measurements of 10
different extracellular metabolites during the shift of E. coli
cells from nitrogen- to carbon-limitation, or vice versa.
Numerically differentiating these extracellular measurements
allowed the authors to estimate dynamically changing uptake
and secretion fluxes, which provided the measurements
necessary to estimate all intracellular fluxes in their model as
a function of time. This has the advantage of avoiding the
complications imposed by measuring and fitting transient
isotope labeling data, but at the same time provides limited
redundancy to validate assumptions on cofactor balancing
and respiration efficiency that must be invoked in order to
close the system of balance equations [12].

By applying the EMU approach, Young et al. [13] have
recently developed computational routines that achieve more
than 5,000-fold speedup relative to prior INST-MFA algo-
rithms. This opens the door to several practical applications
that were previously intractable due to the computational
complexity of INST-MFA, where the isotopomer balances
are described by differential rather than algebraic equations.
INST-MFA is ideally suited to systems that label slowly
due to the presence of large intermediate pools or pathway
bottlenecks. This approach not only avoids the additional
time and cost of feeding isotope tracers over extended
periods [14], but may become absolutely necessary in cases
where the system cannot be held in a fixed metabolic state
long enough to allow isotopic labeling to fully equilibrate. As
a result, INST-MFA is expected to become an indispensible
tool for extending MFA approaches to studies of mammalian
systems [15–17], industrial bioprocesses [10, 18], and other
scenarios where obtaining a strict isotopic steady state may be
impractical. Another emerging application of INST-MFA is
its application to photoautotrophic metabolism, which is the
process by which plants, algae, and cyanobacteria use light
energy to fix carbon dioxide into complex organic molecules.
Because photoautotrophs assimilate carbon solely from CO2,
feeding 13CO2 will produce a uniform steady-state labeling
pattern that is insensitive to fluxes. Thus, conventional
steady-state 13C-MFA is incapable of quantifying autotrophic
metabolic fluxes [19]. However, transient measurements
of isotope incorporation following a step change from
unlabeled to labeled CO2 can be used to estimate fluxes
by applying INST-MFA [20]. This approach enables com-
prehensive flux analysis of photoautotrophic metabolism,
complementing previous 13C-MFA studies of plants [21]
and cyanobacteria [22] that were limited to heterotrophic
or mixotrophic culture conditions, with sugar as the major
carbon source. Taken together, these advances illustrate
how combined progress in both analytical capabilities and
computational techniques are driving MFA applications
toward larger, more dynamic, and more complex biochem-
ical networks, which encompass a growing variety of plant,
animal, and microbial systems.

2.2. Using Metabolite and Gene/Protein Expression Measure-
ments. In addition to 13C-MFA experiments, other large-
scale measurements can be made which capture cellular
metabolic states. These include measurements of metabolite
concentrations and gene or protein expression. Metabolite
concentrations can now be quantified using mass spec-
troscopy for hundreds of metabolites in a single condition.
For example, Bennett and colleagues used LC-MS/MS to
quantify over 100 metabolite concentrations in E. coli cells
grown under three different conditions [23]. These metabo-
lite concentrations can be analyzed to identify potential
metabolic bottlenecks by evaluating enzyme saturation and
estimating Gibbs-free energy changes of reactions. Bennett
and colleagues compared measured metabolite concentra-
tions to reported Michaelis-Menten kinetic parameters (Km)
to determine whether individual reaction rates are substrate
(where [substrate] � Km) or enzyme limited (where
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[substrate] � Km). Their analysis found that most substrate
concentrations were higher than the reported Km values
(83%) indicating that for many reactions the rates are
limited by enzyme levels [23]. Metabolite concentrations
can also be used to estimate thermodynamic properties of
metabolic reactions since the change in Gibbs-free energy
for a reaction (ΔRG′) is dependent on substrate and product
concentrations [24, 25]. The ΔRG′ values can be estimated
from measured metabolite concentrations and then used
to distinguish between those reactions that are operating
close to equilibrium (ΔRG′ ≈ 0), and those reactions
that are far from equilibrium (ΔRG′ � 0) whose rates
may be limited by regulation via enzyme kinetics [25].
Thermodynamic analysis using metabolite concentrations
has been preformed for both E. coli and S. cerevisiae to
identify these types of reactions [23, 25, 26]. Together the
analysis of metabolite concentrations using both kinetic (if
available) and thermodynamic information can be useful to
identify metabolic bottlenecks or rate limiting reactions.

In addition to metabolite concentrations, gene expres-
sion and protein expression measurements can also be used
to help elucidate metabolic fluxes and their regulation.
Recent modeling efforts have used these types of measure-
ments to improve predictions of fluxes through metabolic
reactions [5, 27–29]. With these approaches, gene expression
data is used to place restrictions on flux values or flux
changes. The GIMME method uses an expression threshold
and prevents flux through reactions associated with genes
whose expression is below the threshold. In this case, an
inconsistency score is minimized, where penalties depend on
the magnitude of the flux and how far the expression is below
the threshold [27]. Another method, proposed by Shlomi
and colleagues, instead groups reactions into high, medium,
and low sets based on expression levels of associated genes
[29]. A flux distribution is then identified that has flux
through as many reactions in the high set as possible, and
no flux through as many reactions as possible in the low set.
In the third method (E-flux), the relative expression levels of
genes from a given condition are used to place constraints
on the upper limits flux values can take [28]. Another
approach, developed by Moxley and colleagues, instead uses
the changes in expression level between two conditions to
estimate the changes in fluxes between two conditions [5].
In this case, the predicted flux change depends on the
expression change (ΔmRNA) and some additional model
parameters. All of these methods have been applied to gene
expression measurements, but they likely can also be used
with quantitative proteomics measurements.

3. Predictive Approaches for Improving
Cellular Phenotypes

The modeling approaches described in the previous sections
can provide descriptions of the metabolic fluxes by analyzing
different types of experimental measurements. Once these
metabolic states are known, other modeling approaches
can be used to identify which environmental and/or ge-
netic perturbations would improve cellular phenotypes, such

as the production of desired chemicals. These predictive
approaches include pathway-based and optimization-based
methods, that take into account the structure and stoichiom-
etry of metabolic networks, as well as, kinetic modeling
approaches that also account for enzyme kinetics.

3.1. Pathway-Based Approaches. Identification of the relevant
pathways of a metabolic network is essential for finding
effective metabolic engineering strategies. These pathways
can also help derive minimal media requirements for an
organism and assess the robustness and redundancy of key
metabolic pathways. In this special issue, F. Llaneras and J.
Picó review and compare four established methods used to
identify relevant metabolic pathways: extreme currents, ele-
mentary modes, extreme pathways, and minimal generators
(F. Llaneras and J. Picó, “Which metabolic pathways generate
and characterize the flux space? A comparison among ele-
mentary modes, extreme pathways and minimal generators”).
The authors recommend elementary modes for determining
the metabolic impact of gene knockouts and the required
pathways of a network for producing desired chemicals.
The calculation of elementary modes requires knowledge of
reaction stoichiometry and reversibility, making the recent
modeling advances in biochemical reaction thermodynamics
important to this analysis. Several algorithms and software
packages have been developed for calculating the elementary
modes of a metabolic network, including Metatool [30, 31],
FluxAnalyzer [32], and functionalities built into OptFlux
[33]. However, the problem of combinatorial explosion when
calculating elementary modes for large complex metabolic
networks has been documented [34]. This has paved the
way for clustering algorithms such as the Agglomeration
of Common Motifs (ACoM) [35] in an attempt to give
biological meaning to elementary modes and define related-
ness between reactions. Application of elementary modes to
rational metabolic engineering approaches has now enabled
strain design algorithms such as those used by OptFlux
[33] and the genetic algorithm-based method compiled by
Boghigian et al. [36]. Elementary flux modes have been
successfully used to engineer strains with a variety of desired
phenotypes, including sugar coutilization [37], ethanol [37,
38], and carotenoid production [39]. Z. Chen et al., in this
issue, use elementary modes to find strategies for improving
the conversion of glycerol into succinate by considering the
effects of oxygen utilization and genetic alterations (Z. Chen
et al., “Elementary mode analysis for the rational design of effi-
cient succinate conversion from glycerol by Escherichia coli”).
Random sampling of flux distributions provides another way
of investigating possible flux distributions through metabolic
networks [40, 41], and A. De Martino et al. in this issue
use both structural analysis and sampling to explore the
robustness of human red blood cell (RBC) metabolism (A.
De Martino et al., “Optimal fluxes, reaction replaceability, and
response to enzymopathies in the human red blood cell”).

3.2. Optimization-Based Approaches. Alternatives to path-
way-based approaches include optimization-based meth-
ods, which can also identify mutations that would improve
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desired phenotypes (e.g., increased production yields). Here,
the models use the same stoichiometric and thermodynamic
constraints as those used in pathway-based approaches,
but solutions are identified which maximize or minimize
a stated objective. To predict how metabolic fluxes will
change in response to a genetic perturbation, a number of
different approaches have been developed, including flux
balance analysis (FBA, reviewed in [42]), minimization
of metabolic adjustment (MOMA) [43], regulatory on/off
mechanism (ROOM) [44], regulated flux balance analysis
(rFBA and SR-FBA) [45, 46], and probabilistic regulation of
metabolism (PROM) [47]. Most of these approaches are used
to predict the immediate behavior of knockout strains [43,
44], with the exception being FBA, whose predictions more
closely resemble strain behavior after cells have undergone
adaptive evolution [48]. MOMA has been successfully used
to engineer strains with increased production of a variety of
products including lycopene [49, 50], valine [51], threonine
[52], and polylactic acid [53].

To identify those genetic strategies that are predicted to
have the highest chemical production levels, a large number
of possible strategies must be considered. Bilevel approaches
can be used to identify which are the best production
strategies given a maximum number of genetic alterations
without having to generate and store predictions for all
possible strategies. These bilevel methods can be solved
using integer programming and/or genetic algorithms [54–
57]. A variety of such bilevel methods have been proposed
which use FBA, SR-FBA, and MOMA to predict mutant
strain behaviors, and these approaches can consider genetic
changes involving gene deletions, altered gene expression,
or altered transcriptional regulation [54, 56, 58–61]. These
methods have been used to design strains for a variety
of chemicals [55, 62–64]. A more recent bilevel approach
(OptFORCE) uses optimization to identify how metabolic
fluxes must change to improve metabolite production, which
is independent of any assumptions about what functions are
used to predict cellular behavior [60].

3.3. Kinetic Modeling Approaches. Both types of models
and methods described in the last two sections do not
take enzyme kinetics into account. As a result, they are
unable to predict how changes in kinetic properties, enzyme,
and metabolite concentrations would affect fluxes through
metabolic pathways. Kinetic models are needed to make
these types of predictions since they capture the dependence
of fluxes on metabolite and enzyme concentrations. These
types of models can be analyzed to identify which changes
are needed for improving cellular phenotypes. The classical
framework for elucidating parameters responsible for the
control of metabolic fluxes is metabolic control analysis
(MCA), developed in the early 1970s independently by
Kacser and Burns [65] and Heinrich and Rapoport [66].
Recently, Visser et al. developed an alternative approach
called linlog kinetics [67, 68]. Here, all rate equations are
modeled with the same basic mathematical structure in
which the relationship between rates and enzyme levels
is linear, while for metabolite levels, a linear combination

of logarithmic terms is used. Young et al. [69] have
recently expanded the cybernetic modeling framework of
Ramkrishna [70] to incorporate metabolic pathway concepts
derived from elementary mode analysis. This led to models
that could predict both local and global control properties of
metabolic networks in response to either dynamic environ-
mental shifts or stable genetic manipulations. These models
were applied to predict phenotypes of several recombinant
E. coli strains, and they were found to provide good
agreement with experimental data. Furthermore, because of
the dynamic nature of these models, they were capable of
simulating responses that are not readily addressed by purely
stoichiometric models (e.g., allosteric or kinetic effects of
intermediate metabolites, enzyme overexpressions and par-
tial knockdowns, and time-dependent culture conditions).
In this special issue, A. Yachie-Kinoshita et al. review the
history of kinetic models for human red blood cells (RBCs)
and describe an RBC metabolic model implemented in
the E-cell simulation environment (A. Yachie-Kinoshita et
al., “A metabolic model of human erythrocytes: practical
application of the E-Cell Simulation Environment”). They
discuss how this E-cell RBC model can be applied to predict
RBC responses to hypoxic environments and long-term cold
storage and identify enzymes whose altered activity could
improve storage conditions for RBCs.

4. Concluding Remarks

A growing number of computational tools that facilitate
the evaluation and improvement of strains for metabolic
engineering are currently being developed and expanded.
These methods can account for a wide range of experimental
measurements to provide an improved understanding of
metabolic states and current limitations, and they can be
used to identify new engineering strategies for improved
chemical production. The collection of papers in this special
issue highlight several recent advances and underscore the
emerging applications of these computational tools.

Jennifer L. Reed
Ryan S. Senger

Maciek R. Antoniewicz
Jamey D. Young
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[10] K. Nöh, K. Grönke, B. Luo, R. Takors, M. Oldiges, and W.
Wiechert, “Metabolic flux analysis at ultra short time scale:
isotopically non-stationary 13C labeling experiments,” Journal
of Biotechnology, vol. 129, no. 2, pp. 249–267, 2007.
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