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Palmitate (PA) is known to induce reactive oxygen species (ROS) formation and apoptosis in liver

cells, whereas concurrent treatment of oleate (OA) with PA predominately induces steatosis

without ROS in liver cells. We previously reported that PA treatment induces the decoupling of

glycolysis and tricarboxylic acid cycle (TCA cycle) fluxes, but OA co-treatment restored most

metabolic fluxes to their control levels. However, the mechanisms by which metabolites are linked

to metabolic fluxes and subsequent lipoapoptotic or steatotic phenotypes remain unclear.

To determine the link, we used GC-MS-based polar and non-polar metabolic profiling in

lipoapoptosis- or steatosis-developing H4IIEC3 hepatoma cells, to examine the metabolome at

different time points after treatment with either PA alone (PA cells) or both PA and OA

(PA/OA cells). Metabolic profiles revealed various changes in metabolite levels for TCA cycle

intermediates, pentose phosphate pathway (PPP) intermediates, and energy storage metabolites

between PA and PA/OA cells. For example, adenosine was markedly increased only in PA cells,

whereas gluconate was increased in PA/OA cells. To assess the interaction among these metabolites,

the metabolite-to-metabolite correlations were calculated and correlation networks were visualized.

These correlation networks demonstrate that a dissociation among PPP metabolites was introduced

in PA-treated cells, and this dissociation was restored in PA/OA-treated cells. Thus, our data

suggest that abnormal PPP fluxes, in addition to increased adenosine levels, might be related to

the decoupling of glycolysis and the resulting lipoapoptotic phenotype.

Introduction

Analysis of the cellular metabolome is important when relating

metabolites to cellular phenotype.1,2 Various metabolomic

studies have been reported in cellular models of drug

response,3 adipocytes,4 viral infection,5 carcinogenesis6,7 and

more recently embryonic stem cell differentiation.8

Elevated serum free fatty acids (FFA) cause hepatic apoptosis,9

which is a prominent feature of non-alcoholic steatohepatitis

(NASH) that correlates with disease severity.10 Previous

in vitro studies in Chinese hamster ovary (CHO) cells,9,11

cardiac myocytes,12 pancreatic b-cells,13 and hepatic cells14,15

demonstrated that saturated fatty acids (SFA), but not mono-

unsaturated fatty acids (MUFAs), induce reactive oxygen

species (ROS) generation and apoptosis, whereas MUFAs

predominately induce steatosis. An earlier study showed that

MUFA co-treatment changed the palmitate (PA)-induced

phenotype from apoptosis to steatosis by diverting SFA into

triglyceride synthesis, thereby reducing apoptosis in CHO cells.11

Ceramide accumulation has been considered as a primary factor

responsible for SFA-induced ROS generation and apoptosis

because ceramides are synthesized de novo from PA and serine,

and they also have been shown to activate apoptotic signaling.16

More recent studies including ours, however, have reported that

SFA can induce apoptosis through ROS formation17 and

endoplasmic reticulum stress, independent of intracellular

ceramide levels.18

We previously examined metabolic flux using isotopic

tracers to quantify phenotypic changes in H4IIEC3 hepatoma

cells treated with either PA alone (PA cells) or a combination

of PA and oleate (OA) (PA/OA cells).17 Our results indicate

that the FFA-induced ROS generation and apoptosis are

accompanied by the decoupling of glycolytic and TCA cycle

fluxes, leading to abnormal cytosolic redox states. However,

the mechanism by which glycolytic and TCA cycle fluxes are

disconnected by elevated serum FFA is still indistinct.

To further address this question, we hypothesized that there

could be as yet unknown metabolites that contribute to the

dissociation between glycolysis and the TCA cycle leading to

ROS generation in the early phases of apoptosis in cells.

In the current study, we conducted GC-MS-based

comprehensive profiling of polar and non-polar metabolites
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to find metabolites corresponding to fatty acid induced

apoptosis or steatosis in H4IIEC3 hepatoma cells. These

metabolites were then correlated with other metabolites

discovered separately in apoptotic and steatotic cells, to

identify factors causing SFA-induced apoptosis and restoration

of normal cellular metabolism by MUFA.

Results

PA-induced lipoapoptosis and restoration of normal cellular

metabolism by OA under normal physiological amino acid

concentrations

Previously, we showed that PA induced the decoupling of the

glycolytic and TCA cycle fluxes in H4IIEC3 rat hepatoma cells

cultured in media containing physiological amino acid

concentrations, whereas treatment with OA in addition to

PA restored most fluxes to normal levels.17 Table 2 shows the

influence of treatment with 400 mM PA or OA alone or

co-treatment with 10, 50 or 200 mMOA on ROS concentration,

cell viability and cellular lipid levels using growth medium

containing the same amino acid composition. The data clearly

show that the induction of ROS and cell death were caused by

treatment with PA alone, whereas treatment with OA alone

and concurrent treatment with OA and PA increased cellular

lipid concentration (Table 2 and Fig. 1). Co-treatment with

OA concentrations over 50 mMwas sufficient to normalize PA-

induced ROS generation and to restore cell viability (Fig. 1).

Treatment with PA disturbs cellular metabolite levels

In the present study, we investigated time-dependent changes in

cellular metabolite concentrations after the treatment of H4IIEC3

cells with 400 mM PA alone (PA cells) or both 400 mM PA and

50 mM OA (PA/OA cells), to identify metabolites related to

apoptosis and steatosis. We applied GC-MS based comprehensive

metabolite profiling to untreated cells, PA-cells and PA/OA-cells

after varying incubation times (3, 6 and 12 h). In these experiments,

the amino acid concentrations were set at physiological levels (total

amino acids= 2.15 mM). Representative GC-MS chromatograms

of polar and non-polar metabolites from H4IIEC3 cells are shown

in Fig. 3. Using our method, we were able to simultaneously

observe concentrations of various amino acids, organic acids,

nucleic acids and sugar metabolites from polar extracts in addition

to concentrations of FFA, cholesterols, ceramides, monoacyl-

glycerols and diacylglycerols from non-polar extracts (Fig. 2A

and B). We identified a total of 468 peaks from polar (325 peaks)

and non-polar (143 peaks) fractions obtained from H4IIEC3 cell

lysates (data not shown). After the removal of non-reproducible

peaks, we were left with a total of 254 well-conserved peaks and

identified 107 metabolites from these peaks, using the NIST05 and

in-house standard libraries as described in Experimental

Procedures.

Fig. 3A shows the relative abundance (R.A.) of 254 meta-

bolites against p-values derived from a 2-way ANOVA. The

33 most abundant and significant metabolites (R.A. > 0.5 and

p o 0.00005) from Fig. 3A were subjected to FDA to obtain a

clear time-dependent separation among untreated cells, PA cells

and PA/OA cells (Fig. 3B and C). In Fig. 3B and C, the y1 axis

roughly corresponds to the steatotic phenotype, and the y2 axis

represents the apoptotic phenotype. We identified marker

metabolites including adenosine, malate, serine, citrate, aspartate,

C16 ceramide and diacylglycerol (DAG) in PA cells and fructose,

gluconate, glutamate and desmosterol in PA/OA cells. In

addition, we found relatively high glycerate levels in both

untreated and PA cells in comparison to PA/OA cells. A detailed

list of these marker metabolites is presented in Table 3. We also

explored low-abundance metabolites as phenotypic markers, as

described in Fig. 4A (total 117 metabolites, R.A. > 0.001 and

p o 0.00005). Pearson (r) correlation analysis between the most

and least abundant metabolites listed in Table 3 allowed the

identification of pyruvate, galactonate and other minor ceramide

species as additional markers (Fig. 3D). Representative

correlation plots are shown in Fig. 4A. Pyruvate exhibited a clear

positive correlation with adenosine. Serine, a marker of PA cells,

showed a positive correlation with alanine but a negative

correlation with gluconate, a marker of PA/OA cells (Fig. 4A).

Time-dependent changes in phenotypic metabolites are shown in

Fig. 4B. Cellular adenosine and pyruvate were strongly increased

in PA cells from 3 to 6 h but were decreased at 12 h (Fig. 4B).

Additionally, ceramide and 1,2 dipalmitoylglycerol (DAG) levels

were continuously higher in PA cells than in PA/OA-cells

(Fig. 4B). Both gluconate and galactonate were increased only

in PA/OA cells (Fig. 4B). Glycerate, a product of glycerolipids,

was consistently lower in PA/OA cells (Fig. 4B).

Fig. 1 Microscopic observations of FFA-induced lipid accumulation and ROS generation in H4IIEC3 cells. Cells were incubated with 400 mM
palmitate (PA), 400 mM oleate (OA), 400 mM PA plus 10 mM or 50 mM OA or without FFA (none) for either 12 h (for ROS detection) or 24 h

(for lipid detection). Cellular lipids and ROS were determined using Nile red and DCF fluorescence, respectively.
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Comparison of metabolite–metabolite correlation between

apoptotic and steatotic cells

Changes in metabolite–metabolite correlation pairs between

control and apoptotic or steatotic phenotypes were assessed

using a total of 117 metabolites (R.A. > 0.001 and p o
0.00005). We choose to use Spearman r for comparison of

metabolite–metabolite correlated pairs because we found non-

linear relationships in most of the scatter plots (Fig. 5A).

Fig. 5A shows a histogram of the Spearman r between each

metabolite-to-metabolite pair, where 6786 metabolite-to-

metabolite pairs were generated from 117 metabolites. To

examine whether FFA treatments altered the correlation

between metabolite-to-metabolite pairs, the metabolite-to-

metabolite pairs were arranged in order of the change in r
between the two groups from the negative to positive

maximum, leading to the finding that some of the metabolites

were clearly sensitive to FFA treatment (Fig. 5B).

To assess the significance of correlated pairs, we determined a

false discovery rate (FDR) by estimating a q-value for each

correlated pair. Predicted q-values for PA and PA/OA conditions

were compared to p-values for approximately 6786 metabolite

pairs (Fig. 5C). For the PA-cell dataset, a p-value of 0.0488 has a

corresponding q value of 0.05, which on average was associated

with a correlation value (r) of 0.55 (Fig. 5D). This estimation of

the FDR was different from the distribution seen in the PA/OA

cell dataset. In PA/OA cell data, a p-value of 0.0594 has a

corresponding q value of 0.05, which on average was associated

with a correlation value (r) of 0.53 (Fig. 5D).

Comparison of the metabolite-to-metabolite network between

apoptotic and steatotic cells

Metabolite-to-metabolite correlated pairs were visualized as

network graphs using the Spearman r matrices obtained from

PA and PA/OA cells (Fig. 6). For this analysis, a correlation

cutoff was set at 0.55, which is greater than the minimum

r value of 0.05 indicated by a q-value of 0.05 (Fig. 5C). The

q value estimation of the FDR suggests that correlations

having an absolute value greater than 0.55 are likely to be

reproducible. To evaluate the significance of each element in

the correlation network, we used the degree as a standard

measure of centrality, and also applied a k-core analysis to

generate a sequence of sub-networks that gradually reveals the

globally central region of the original network. In Fig. 6, each

node is characterized by shape (metabolite), size (degree of

correlation) and color (‘‘coreness’’). In addition, a red or blue

line corresponds to whether the relationship lies inside or

outside of the coreness—kmax, respectively. Correlation

networks in apoptotic and steatotic groups were developed

using PA cells (n= 15) and PA/OA cells (n= 15), respectively

(Fig. 6A and B). In PA cells, network analysis revealed a

relatively higher degree of correlation among TCA cyclerelated

metabolites such as citrate, glutamate and adenosine with

smaller node sizes, with the glycolytic and PPP metabolites

fructose-6P, ribose-5P and gluconate observed to scatter

broadly among the network, generating different clusters

(Fig. 6A). Notably, ceramides and other lipid molecules were

observed to have smaller degrees of centrality and coreness.

Thus, this network reveals weak interactions among TCA

cycle, PPP and glycolysis metabolites in PA cells. By contrast,

PA/OA cells show a higher degree of correlation between PPP

and glycolytic metabolites, such as fructose-6P, ribose,

gluconate and galactonate. In addition, TCA cycle inter-

mediates and mono- or diacylglycerols showed relatively

higher degrees of centrality and coreness in PA/OA cells,

suggesting that the coordination between the TCA cycle

and lipogenesis was accelerated to provide for triglyceride

production in these cells (Fig. 6C).

Fig. 2 Representative gas chromatography profiles of polar and non-polar metabolites from H4IIEC3 cells. A biphasic metabolite extraction was

examined from H4IIEC3 cells grown in 100 mm dishes, with polar metabolites partitioning into a methanol/water phase (A) and non-polar

metabolites partitioning into a chloroform phase (B). GC-MS analysis was performed as described in the Experimental Procedures with the non-

polar internal standards 4.96 nmol pentadecanoate, 2.94 nmol 5a-cholestane and 4.2 nmol N-pentadecanoyl-sphingosine (C15 ceramide) in

addition to the polar internal standards 9.9 nmol ribitol (shown in italics).
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Discussion

We previously used stable isotopic analyses of metabolic flux

in central carbon metabolic pathways to uncover metabolic

disturbances that precede the onset of apoptotic or steatotic

phenotypes.17 Our results clearly show that the activation of

TCA fluxes by PA occurs concomitantly with a reduction of

glycolysis and an increase in the cytosolic NAD+/NADH

Fig. 3 Marker identification from H4IIEC3 cells developing apoptotic and steatotic phenotypes. (A) Comprehensive metabolite profiles of

untreated cells, PA cells and PA/OA cells at varying incubation times (3, 6 and 12 h) were obtained using GC-MS analyses as shown in Fig. 1. In

total, 254 well-conserved peaks were obtained using the SpectConnect software, and 107 metabolites were identified using the NIST05 and in-

house standard libraries. Relative abundances (R.A.) against p values from the 2-way ANOVA of 254 metabolites are shown inside the blue box in

panel A, with the 117 metabolites with relatively higher significance (R.A. > 0.001 and p o 0.00005) and the 33 most abundant and significant

metabolites (R.A. > 0.5 and po 0.00005) highlighted inside orange and red boxes, respectively. (B and C) Fisher discriminant analysis (FDA) and

its loading plot. The y1 axis roughly corresponds to the steatotic phenotype, and the y2 axis represents the apoptotic phenotype. In panel B, PA

and PA/OA conditions are represented by red and blue symbols, respectively, and the FDA analysis shows the time-dependent separation among

the three groups. In panel C, polar and non-polar metabolites are shown as blue and pink symbols, respectively. A detailed list of marker

metabolites is presented in Table 3. (D) Correlation-based clustering to explore phenotypic metabolites from the low R.A. metabolites (total 117

metabolites, orange symbols in panel A). Metabolites with red text represent highly reliable markers obtained from FDA (panel C).
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ratio.17 The decoupling of glycolytic and TCA cycle fluxes was

normalized after co-supplementation with OA. Also, it was

found that amino acids play a modulatory role in these

processes, possibly through control of central carbon fluxes.

However, the mechanisms that link metabolites, metabolic

flux and apoptotic or steatotic phenotypes remain unclear.

In the present study, we used metabolic profiling in

pre-apoptotic cells to determine what physiological events lead

to ROS formation and apoptosis. Lipid profiling experiments

have been used to assess levels of long-chain fatty acids,

cholesterol and ceramides in PA-treated HL60 and MIN6

cells.13,19 However, none of these studies included a comprehensive

analysis of polar metabolites. Our metabolic profiling revealed

perturbation of polar and non-polar metabolites in both PA

and PA/OA cells. For example, we identified the condition-

specific markers adenosine, TCA cycle metabolites and

ceramide species in PA cells, sugar metabolites in PA/OA cells

and amino acids in both PA and PA/OA cells. Adenosine was

Fig. 4 Representative metabolites indicating development of both apoptotic and steatotic phenotypes. (A) Representative correlation plots of

metabolites included in correlation-based clustering (panel D in Fig. 2). (B) Time-course changes of marker metabolite concentrations obtained

through FDA and hierarchical clustering. Here, glycerate is shown with the PA/OA specific metabolites, although it was originally categorized as

an untreated marker (group-I) in panel C. Values are expressed as mean � S.D. (n = 5).
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strongly increased in PA cells. Recent studies have presented

evidence that PA can inhibit the adenosine nucleotide

translocator (ANT) in isolated mitochondria.20,21 Inhibition

of ANT has been proposed to contribute to cellular dysfunction

by increasing ROS and adenosine levels by affecting the

coenzyme Q redox state, mitochondrial membrane potential

and cytosolic ATP concentration.21 Furthermore, exchange of

ATP and ADP via ANT across the mitochondrial membrane

is normally cooperative with the hexokinase reaction, a first

step of glycolysis.22,23 Thus, inhibition of ANT could

potentially lead to reduced glycolysis and an increased

cytosolic NAD+/NADH ratio.

Ceramide has been considered as a factor responsible for

palmitate-induced apoptosis, because it also has been shown

to activate apoptotic signaling. Recent studies, however, have

reported that SFAs can induce apoptosis through ROS

formation and endoplasmic reticulum stress without altering

intracellular ceramide levels.16 In our previous study, ceramide

synthesis inhibitors had no effect on palmitate-induced ROS

generation and caspase 3/7 activation, even though they

completely suppressed cellular ceramide.17 Ceramide is known

to be synthesized de novo from palmitate and serine. We

previously showed that cellular ceramide could be influenced

by medium amino acid availability, but it is not involved in

Fig. 5 Metabolite-to-metabolite correlativity in FFA-treated H4IIEC3 cells. (A) Histograms of Spearman’s rank correlation (r) of metabolite-to-

metabolite correlated pairs calculated for metabolites from PA cells (sum of 3, 6, 12 h time points, n= 15) and PA/OA cells (sum of 3, 6, 12 h time

points, n=15). In total, 6786 metabolite-to-metabolite pairs were generated from 117 metabolites described in Fig. 2A. (B) Changes in metabolite-

to-metabolite correlations (r) after treatment with FFA. Metabolite-to-metabolite pairs are ranked in order of the change in r (PA/OA–PA) from

negative maximum to positive maximum (bottom panel). (C) Estimation of the false discovery rate (FDR). Comparisons of q-values and p-values

for the metabolite:metabolite correlates are shown for the datasets from PA-cells and PA/OA-cells; q values of 0.05 for PA-cells and PA/OA-cells

are associated with p values of approximately 0.0488 and 0.0594, respectively. (D) Distribution of metabolite-to-metabolite correlations (r) to
p-values.
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both palmitate- and amino-acid-induced phenotypic changes,

at least in our model.17

In the present study, serine and gluconate were also identified

as markers of PA and PA/OA cells, respectively, and showed

negative correlation with each other. Sriram et al. employed

metabolic flux analysis using 13C labeling in H4IIE cells and

confirmed the presence of PPP activity in this cell line.24 Our data

cannot provide a conclusive explanation of this negative

correlation, but it is likely a result of flux differences in the upper

glycolytic pathway and PPP. The present network analysis

illustrates weak interactions among the TCA cycle, PPP and

glycolysis metabolites in PA cells. By contrast, stronger

associations between PPP and glycolytic metabolites were seen

in PA/OA cells. In addition, TCA cycle metabolites showed

associations with glycerolipid intermediates only in PA/OA cells,

indicating that the increased TG synthesis caused by OA

co-treatment was accompanied by modulation of flux through

the TCA cycle. Thus, these data suggest that changes in PPP flux

might be also related to the decoupling of flux through the

glycolytic pathway and TCA cycle via the modulation of PA

concentration in cells developing an apoptotic phenotype.

Conclusion

In the present study, we applied GC-MS-based, comprehensive

metabolic profiling to track metabolomic changes in cells

Fig. 6 Metabolite-to-metabolite correlation networks for PA cells (A) or PA/OA cells (B). Networks are generated using the Spearman rmatrices

for the 117 metabolites shown in Fig. 2A. The node shape, size, and color indicate mode (metabolite), degree, and coreness, respectively. Red or

blue lines indicate whether the connected metabolites are inside or outside of the coreness—kmax , respectively. For this analysis, the correlation

cutoff was set at 0.55, which is greater than minimum r of 0.53 indicated by a q-value of 0.05 (Fig. 3C). The q value estimation of the FDR suggests

that correlations with an absolute value greater than 0.53 are likely to be reproducible.
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developing lipoapoptotic and steatotic phenotypes, and we

successfully identified phenotype-specific changes. We believe

that our methods can be used as powerful tools for the

discovery of metabolic profiles in various mammalian cell

models. Further studies will be needed to determine the

significance of all identified metabolites in these lipoapoptotic

and steatotic phenotypes.

Experimental procedures

Materials

Free amino acids were purchased from Sigma (St. Louis, MO,

USA). Fatty-acid-free bovine serum albumin (BSA) was

purchased from JRH Biosciences (Lenexa, KS, USA).

Amino-acid-free Dulbecco’s modified Eagle’s medium

(DMEM) was a gift from Ajinomoto (Tokyo, Japan). All

silylation reagents used in this study were purchased from

Pierce (Rockford, IL, USA).

Cell culture

H4IIEC3 cells (American Type Culture Collection, Manassas,

VA, USA) were cultured in DMEM supplemented with 10%

fetal bovine serum, 50 units per ml penicillin and 50 units per

ml streptomycin sulfate. Medium was changed to a customized

medium containing 25 mM glucose, 2.15 mM amino acids,

amino-acid-free DMEM, 20 mM HEPES and 0.5% serum

replacement 3 with or without FFA–BSA complex. Based on

our previous study,17 the amino acid composition was

designed to resemble rat plasma amino acids (Table 1).

Metabolites in the intracellular compartment were analyzed

by GC-MS at 3, 6 and 12 h.

ROS measurement

Cellular ROS generation was measured using H2DCFDA

(Invitrogen, Carlsbad, CA, USA) as described previously.25

H2DCFDA is a non-polar compound that readily diffuses into

cells, where it is hydrolyzed by intracellular esterases to the

nonfluorescent molecule dichlorodihydrofluorescein, which

remains trapped within the cells. In the presence of a proper

oxidant, dichlorodihydrofluorescein is oxidized to the highly

fluorescent 2,7-dichlorofluorescein. Cells treated with various

fatty acids or amino acids were incubated with 10 mM
H2DCFDA for 30 min at 37 1C in the dark, then resuspended

with Hanks balanced salt solution (HBSS). The fluorescence

intensity was measured at an excitation/emission wavelength

of 490/530 nm using a FusionTM universal microplate

analyzer (PerkinElmer, Shelton, CT, USA).

Nile red staining

Cells were cultured in 96-well plates with or without FFA.

After a 24 h incubation, cells were stained with Nile red using

AdipoRed reagent (Cambrex, East Rutherford, NJ, USA).

Intracellular lipid accumulation was observed using a fluorescence

microscope and quantified using a microplate analyzer at an

excitation/emission wavelength of 485/590 nm.

Cell viability

Cultured cells in 96-well plates were washed twice with PBS

and then incubated with serum-free DMEM for 4 h at 37 1C.

Cellular metabolic capacity was measured based on reduction

of resazurin using the CellTiter-Blues cell viability assay

(Promega, Madison, WI, USA).

Metabolite extraction

We employed a biphasic extraction protocol, with non-polar

metabolites partitioning into a chloroform phase and polar

metabolites partitioning into a methanol/water phase. Cells

cultured in 100 mm dishes were washed twice with ice-cold

Table 1 Comparison of physiological and medium amino acids.
Rat plasma amino acids are cited from our previous study17

Amino acid

Plasma Culture medium

Rat DMEM This study

Histidine 45–90 200 50
Isoleucine 30–115 800 50
Leucine 40–195 800 100
Lysine 80–285 800 200
Methionine 30–100 200 50
Phenylalanine 34–85 400 50
Threonine 55–270 800 100
Tryptophan 30–105 100 50
Valine 55–235 800 150
Alanine 220–460 400 250
Arginine 36–143 400 80
Asparagine 35–58 0 50
Asparatate 38–90 0 20
Cystine 10–56 200 50
Glutamate 42–94 0 50
Glutamine 375–700 4000 450
Glycine 105–460 400 150
Proline 100–200 0 100
Serine 110–210 400 100
Tyrosine 30–100 400 50
Essential/non-essential 0.30–0.66 0.79 0.59
Total 1875–3500 11 100 2150

Table 2 FFA-induced apoptosis and steatosis in H4IIEC3 cells under physiological amino acids

Cellular lipids ROS Cell viability

(Nile red fluorescence) (DCF fluorescence) (Resazurin reduction)

Untreated 3837 � 143 (100) 4292 � 584 (100) 1.0 � 0.073 (100)
400 mM PA 17 064 � 980* (445) 9732 � 154* (227) 0.44 � 0.041* (44)
400 mM PA + 10 mM OA 19 384 � 1054* (505) 6752 � 1334* (157) 0.54 � 0.070* (54)
400 mM PA + 50 mM OA 30 718 � 920* (801) 4934 � 621 (115) 0.96 � 0.063 (96)
400 mM PA + 200 mM OA 35 678 � 1444* (930) 4201 � 244 (98) 0.99 � 0.045 (99)
400 mM OA 20 167 � 1497* (526) 2460 � 1056* (57) 0.95 � 0.049 (95)

Values are expressed as mean � SEM (n = 3). *p o 0.05 for the comparison with untreated cells. Values in parentheses are percent control.
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PBS and immediately quenched with 1 ml pre-cooled methanol

(�80 1C). Cells were collected in glass tubes with a cell scraper

(BD Biosciences, San Jose, CA, USA). Cells were resuspended

with 1 ml ice-cold water, and the remaining cells were

combined in the same tubes. For determination of protein

concentration, 20 ml of cell suspension was taken from the

sample tubes and stored at �80 1C.

To prepare samples for GC-MS analysis, 15.8 nmol trihepta-

decanoin, 4.96 nmol pentadecanoate, 2.94 nmol 5a-cholestane
and 4.2 nmol N-pentadecanoyl-sphingosine (C15 ceramide) in

30 ml chloroform (non-polar internal standards) and also

9.9 nmol ribitol in 30 ml methanol (polar internal standards)

were added. After addition of 1 ml chloroform, samples were

shaken for 30 min at room temperature and then 3 ml chloroform

and 2 ml water were added. Vortexed samples were centrifuged

at 4000g for 30 min at room temperature. Two 2 ml extracts

from the methanol/water phase or non-polar samples from the

chloroform phase were separately collected in new tubes and

then evaporated to dryness. All samples were stored at �80 1C
until analysis. The protein content for each sample was

quantified using a BCA assay kit (Pierce, Rockford, IL, USA).

Polar metabolite analysis

Derivatization of polar metabolites was performed according

to previous studies.17,26 One of each pair of dried samples was

dissolved in 30 ml of methoxyamine hydrochloride (20 mg per

ml in pyridine). Sample solutions were sonicated for 15 min at

room temperature and incubated for 120 min at 37 1C. After

incubation, 70 ml MBTSTFA+ 1% TBDMCS was added and

the solutions were further incubated overnight at room

temperature.

Gas chromatography-mass spectrometry (GC-MS) analysis

was performed using an Agilent 6890N GC equipped with a

30 M DB-35ms capillary column connected to an Agilent

5975B MS operating under ionization by electron impact

(EI) at 70 eV. An injection volume of 1 ml was introduced in

splitless mode at an injection temperature of 270 1C. The

temperature of the MS source and quadrupole were held at

230 1C and 150 1C, respectively. The detector was set to scan

over the mass range 50–550 m/z. The GC temperature

program was optimized to follow a large number of metabolites

simultaneously: 5 min at 90 1C, 60 min ramp to 280 1C and

held for 5 min at 280 1C (total 70 min per run).

Table 3 Phenotypic metabolites in FFA treated H4IIEC3 cells

No.
Loading
(y2/y1)a Metabolite Fr.b Ionc/m/z RTd/min Description from best library hit

Probability
(%)

1 �9.16 Unknown PF 204 48.2 No library fit o20
2 �4.28 Adenosine PF 230 67.5 Adenosine-tetrakis (trimethylsilyl) 98.4
3 2.69 Citrate PF 273 43.9 Citric acid, tetrakis (trimethylsilyl) 74.9
4 2.47 Aspartate PF 232 29.1 L-Aspartic acid, N-(trimethylsilyl)-, bis(trimethylsilyl) ester 91.5
5 2.33 Threonine PF 218 21.7 N,O,O-Tris-(trimethylsilyl)-L-threonine 96.8
6 2.32 1-Monopalmitoyl-glycerol NF 371 22.3 1-Monopalmitin trimethylsilyl ether 94.3
7 2.22 2-Monopalmitoyl-glycerol NF 218 21.9 2-Monopalmitin trimethylsilyl ether 88.0
8 �2.03 Malate PF 233 27.7 Tris(trimethylsilyl) malic acid 78.5
9 2.00 Unknown PF 171 26.5 No library fit o20
10 �1.96 Serine PF 204 20.8 N,O,O0-Tris-(trimethylsilyl)-serine 79.0
11 1.79 C16 Ceramide NF 370 51.1 In-house library hit n/a
12 1.68 Unknown NF 73 11.4 No library fit o20
13 1.61 1,2-Dipalmitoyl-glycerol NF 145 53.0 2-(Palmitoyloxy)-1-([(trimethylsilyl)oxy]methyl)ethyl palmitate 87.8
14 1.20 Glycine PF 174 17.9 Glycine, N,N-bis(trimethylsilyl)-, trimethylsilyl ester 90.2
15 1.15 Unknown PF 73 55.9 No library fit o20
16 1.09 Myo-inositol-phosphate PF 318 66.8 D-Myo-inositol,1,2,4,5,6-pentakis-O-(trimethylsilyl)-,

2,3-bis[(trimethylsilyl)oxy]propyl trimethylsilyl phosphate
97.0

17 1.09 Unknown PF 147 55.0 No library fit o20
18 1.05 Unknown PF 217 56.7 No library fit o20
19 0.86 Unknown PF 113 20.8 No library fit o20
20 0.70 Proline PF 142 18.9 N,O-Bis-(trimethylsilyl)-proline 93.6
21 0.66 Glutamine PF 156 33.4 In-house library hit n/a
22 0.66 N-Acetyl-glutamate PF 174 32.5 Bis(trimethylsilyl) 2-(acetylamino)pentanedioate 52.6
23 0.64 Unknown PF 446 63.9 No library fit o20
24 �0.62 Unknown PF 73 66.6 No library fit o20
25 0.61 Unknown PF 129 29.7 No library fit o20
26 0.56 Desmosterol NF 129 36.9 Cholesta-5,24-diene, 3b-(trimethylsiloxy)- 95.5
27 0.34 Glutamate PF 246 34.0 L-Glutamic acid, N-(trimethylsilyl)-, bis(trimethylsilyl) ester 90.4
28 0.26 9H-Purin-2-amine PF 324 69.5 9H-Purin-2-amine, N-(trimethylsilyl)-6-[(trimethylsilyl)oxy]-9-

[2,3,5-tris-O-(trimethylsilyl)-b-D-ribofuranosyl]-
87.7

29 �0.26 D-Gluconate PF 333 46.0 D-Gluconic acid, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-,
trimethylsilyl ester

76.2

30 0.22 Unknown PF 305 49.9 No library fit o20
31 �0.19 Glycerate PF 292 19.7 Glyceric acid, tris(trimethylsilyl) 95.9
32 �0.12 Unknown PF 247 34.5 No library fit o20
33 �0.01 PF 307 42.9 D-Fructose, 1,3,4,5,6-pentakis-O-(trimethylsilyl)-,

O-methyloxime
88.6

a y2/y1 values of each metabolite in Fig. 3C. b Fraction (Fr. ) in extraction process: PF, polar fraction; NP, non-polar fraction. c Specific ion of

each marker metabolite. d Retention time (RT). n/a, Not applicable.
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Non-polar metabolite analysis

For non-polar metabolite analysis, dried non-polar samples

were dissolved in 1.55 ml of isooctane : methanol : ethyl

acetate (20 : 10 : 1). To remove triglycerides, samples were

applied to a silica gel-packed Poly-Prep column (BIO-RAD,

Hercules, CA, USA) as previously described.27,28 Eluted free

lipid fractions were evaporated to dryness. For ceramide

analysis, samples were re-dissolved in 250 ml of phosphate

buffer (0.1 M, pH 7.0) containing 0.1 U sphingomyelinase and

1 mMMgCl2. Free lipid fractions were extracted three times in

500 ml isooctane: ethyl acetate (3 : 1) and then evaporated to

dryness. Samples were dissolved in 150 ml BSTFA + 1%

TMCS: acetonitrile (4 : 1) and then incubated overnight at

room temperature. GC-MS analysis of free lipids was

performed with the following parameter settings. The

temperatures of the injection port, MS source and quadrupole

were set at 310 1C, 230 1C and 150 1C, respectively. The GC

temperature program was set as follows: 3 min at 130 1C,

4 min ramp to 190 1C, 3 min at 190 1C, 12.3 min ramp to

264 1C, 5 min at 264 1C, 5.75 min ramp to 287 1C, 8 min at

287 1C, 4.6 min ramp to 310 1C, 3 min at 310 1C, 4.7 min ramp

to 325 1C, and 16.6 min at 325 1C (total 70 min per run).

GC-MS data analysis

All GC-MS data were analyzed according to the method of

Styczynski et al.29 Briefly, mass spectra were processed using

AMDIS software (http://chemdata.nist.gov/mass-spc/amdis/;

National Institute of Standards and Technology). The resulting

ELU files were further analyzed by the SpectConnect software

(http://spectconnect.mit.edu/), developed by our laboratory,

to identify well-conserved peaks among multiple GC-MS

chromatograms. SpectConnect can automatically catalog and

track otherwise unidentifiable conserved metabolite peaks across

sample replicates and different sample condition groups without

use of reference spectra. SpectConnect compares every spectrum

in each sample to the spectra in every other sample. By doing so,

it is capable of determining which components are conserved

across replicate samples. SpectConnect also determines which of

these components differentiate one sample condition (e.g.,

time or treatment) from another, whether by changes in

concentrations or merely by their presence/absence. The

only requirement of the experimental measurements is that

each sample condition must have replicates. In a sense,

SpectConnect relies on an increase in signal relative to noise

that is created by this requirement of replicates.29 In the present

study, all experiments were examined by biological replications

in a group of samples (n = 5). Metabolite identification of

EI-MS peaks was performed using in-house standard libraries

along with the NIST05 MS library described in previous

paper.30 Two-dimensional clustering of metabolite correlativity

was performed using JMP (SAS Institute Inc., Cary, NC, USA).

Correlation-based metabolite-to-gene network analysis

Correlation networks were constructed in accord with the

previously reported method.31 To uncover possible inter-

actions between two entities i (=metabolite X) and j

(=metabolite Y), the Pearson or Spearman’s rank correlation

coefficient rij was calculated for each pair within the obtained

dataset. The significance of each pair of metabolite and

transcript correlations was assessed using the FDR by estimating

a q-value for each correlated pair32 The q-value measures the

predicted FDR associated with a significant test when multiple

hypotheses are tested, i.e., a q-value of 0.05 implies that for

every 100 significant correlates, five false correlated pairs are

expected. A comparison of multiple false discovery estimations

on several -omics datasets suggests that the q-value method

has a high apparent power and strong control of the FDR. By

eliminating the associations with lower |rij| pairs (n = 15–30),

we selected only the networks that contained highly significant

correlated entities.

To measure centrality in metabolite–metabolite correlation

datasets or a projected bipartite network, several standard

measures of centrality can be used, such as degree, closeness,

betweenness and eigenvector centrality.33 In the present study,

we used degree as a standard measure of centrality, where the

degree of centrality of a node is defined as the number of edges

incident upon that node. In the case of the correlation of a

metabolite and transcript, this means that the degree of a

metabolite is the number of transcripts that relate to the meta-

bolite, and the degree of a transcript is the number of

metabolites that relate with the other metabolites. Thus,

degree has a clear and simple interpretation in the correlation

network. In addition, we introduced the k-core decomposition

as an additional dimension to visualize complex networks.34

This decomposition, based on a recursive pruning of the least

connected vertices, allows disentanglement of the hierarchical

structure of networks by progressively focusing on their

central cores. The k-core decomposition consists of k-cores

that identify particular subsets; each one was obtained by

recursively removing all vertices having a degree smaller than

k until the degree of all the remaining vertices became greater

than or equal to k (0, 1, 2, . . .kmax). Larger values of

‘‘coreness’’ simply correspond to vertices with larger degrees

and more central positions in the given network.35

Statistics

Statistical significance among the groups was determined by

Tukey’s honestly significant difference test after ANOVA for

multiple comparisons. All correlation analyses were

performed using JMP. Fisher discriminant analysis (FDA)

was performed using our lab’s original software BioSystAnse

1.07. The false discovery rate (FDR) for each metabolite-to-gene

correlate pair was estimated as a q-value using software

created by Alan Dabney and John Storey.36 For generation

of metabolite-to-gene network images, UCINET version

6.34 (Analytic Technologies Inc., Harvard, MA) was used.

This work was supported by NIH DK075850 and NIH

ES013925. J.D.Y. was supported by NIH grant F32 DK072856.

Abbreviations

1,2-DPG 1,2-dipalmitoyl-glycerol

Fructose-6P fructose-6-phosphate

1-MPG 1-monopalmitoyl-glycerol

MUFA monounsaturated fatty acid

Myo-IP Myo-inositol-phosphate

Ribose-5P ribose-5-phosphate

D
ow

nl
oa

de
d 

by
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
 o

n 
25

 J
an

ua
ry

 2
01

2
Pu

bl
is

he
d 

on
 1

6 
Fe

br
ua

ry
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0M

B
00

30
9C

View Online

http://dx.doi.org/10.1039/c0mb00309c


This journal is c The Royal Society of Chemistry 2011 Mol. BioSyst., 2011, 7, 1409–1419 1419

References

1 M. Cuperlovic-Culf, D. A. Barnett, A. S. Culf and I. Chute,
Drug Discovery Today, 2010, 15, 610–621.

2 M. Heinemann and R. Zenobi, Curr. Opin. Biotechnol., 2010, 22, 1–6.
3 S. Tiziani, A. Lodi, F. L. Khanim, M. R. Viant, C. M. Bunce and
U. L. Gunther, PLoS One, 2009, 4, e4251.

4 Y. Si, H. Shi and K. Lee, PLoS One, 2009, 4, e7000.
5 S. Lin, N. Liu, Z. Yang, W. Song, P. Wang, H. Chen, M. Lucio,
P. Schmitt-Kopplin, G. Chen and Z. Cai, Talanta, 2010, 83,
262–268.

6 G. Catchpole, A. Platzer, C. Weikert, C. Kempkensteffen,
M. Johannsen, H. Krause, K. Jung, K. Miller, L. Willmitzer,
J. Selbig and S. Weikert, J. Cell. Mol. Med., 2009.

7 A. Ramanathan, C. Wang and S. L. Schreiber, Proc. Natl. Acad.
Sci. U. S. A., 2005, 102, 5992–5997.

8 O. Yanes, J. Clark, D. M. Wong, G. J. Patti, A. Sanchez-Ruiz,
H. P. Benton, S. A. Trauger, C. Desponts, S. Ding and G. Siuzdak,
Nat. Chem. Biol., 2010, 6, 411–417.

9 L. L. Listenberger, D. S. Ory and J. E. Schaffer, J. Biol. Chem.,
2001, 276, 14890–14895.

10 A. Wieckowska, A. J. McCullough and A. E. Feldstein,
Hepatology, 2007, 46, 582–589.

11 L. L. Listenberger, X. Han, S. E. Lewis, S. Cases, R. V. Farese, Jr.,
D. S. Ory and J. E. Schaffer, Proc. Natl. Acad. Sci. U. S. A., 2003,
100, 3077–3082.

12 I. C. Okere, M. P. Chandler, T. A. McElfresh, J. H. Rennison,
V. Sharov, H. N. Sabbah, K. Y. Tserng, B. D. Hoit, P. Ernsberger,
M. E. Young and W. C. Stanley, Am. J. Physiol.: Heart Circ.
Physiol., 2006, 291, H38–44.

13 A. K. Busch, E. Gurisik, D. V. Cordery, M. Sudlow, G. S. Denyer,
D. R. Laybutt, W. E. Hughes and T. J. Biden, Diabetes, 2005, 54,
2917–2924.

14 F. J. Barreyro, S. Kobayashi, S. F. Bronk, N. W. Werneburg,
H. Malhi and G. J. Gores, J. Biol. Chem., 2007, 282, 27141–27154.

15 H. Malhi, S. F. Bronk, N. W. Werneburg and G. J. Gores, J. Biol.
Chem., 2006, 281, 12093–12101.

16 R. H. Unger and Y. T. Zhou, Diabetes, 2001, 50(Suppl 1),
S118–121.

17 Y. Noguchi, J. D. Young, J. O. Aleman, M. E. Hansen,
J. K. Kelleher and G. Stephanopoulos, J. Biol. Chem., 2009, 284,
33425–33436.

18 W. Guo, S. Wong, W. Xie, T. Lei and Z. Luo, Am. J. Physiol.:
Endocrinol. Metab., 2007, 293, E576–586.

19 K. Y. Tserng and R. L. Griffin, Biochem. J., 2004, 380, 715–722.
20 J. Ciapaite, S. J. Bakker, M. Diamant, G. van Eikenhorst,

R. J. Heine, H. V. Westerhoff and K. Krab, FEBS J., 2006, 273,
5288–5302.

21 J. Ciapaite, G. van Eikenhorst and K. Krab,Mol. Biol. Rep., 2002,
29, 13–16.

22 A. Chevrollier, D. Loiseau, B. Chabi, G. Renier, O. Douay,
Y. Malthiery and G. Stepien, J. Bioenerg. Biomembr., 2005, 37,
307–316.

23 J. G. Pastorino, N. Shulga and J. B. Hoek, J. Biol. Chem., 2002,
277, 7610–7618.

24 G. Sriram, L. Rahib, J. S. He, A. E. Campos, L. S. Parr, J. C. Liao
and K. M. Dipple, Mol. Genet. Metab., 2008, 93, 145–159.

25 G. Sudhandiran and C. Shaha, J. Biol. Chem., 2003, 278,
25120–25132.

26 Y. Noguchi, N. Nishikata, N. Shikata, Y. Kimura, J. O. Aleman,
J. D. Young, N. Koyama, J. K. Kelleher, M. Takahashi and
G. Stephanopoulos, PLoS One, 2010, 5, e12057.

27 K. Y. Tserng and R. Griffin, Anal. Biochem., 2003, 323, 84–93.

28 C. Vieu, F. Terce, F. Chevy, C. Rolland, R. Barbaras, H. Chap,
C. Wolf, B. Perret and X. Collet, J. Lipid Res., 2002, 43, 510–522.

29 M. P. Styczynski, J. F. Moxley, L. V. Tong, J. L. Walther,
K. L. Jensen and G. N. Stephanopoulos, Anal. Chem., 2007, 79,
966–973.

30 Y. Tikunov, A. Lommen, C. H. de Vos, H. A. Verhoeven,
R. J. Bino, R. D. Hall and A. G. Bovy, Plant Physiol., 2005,
139, 1125–1137.

31 Y. Noguchi, N. Shikata, Y. Furuhata, T. Kimura and
M. Takahashi, Physiol. Genomics, 2008, 34, 315–326.

32 B. Z. Ring, S. Chang, L. W. Ring, R. S. Seitz and D. T. Ross, BMC
Genomics, 2008, 9, 74.

33 S. P. Borgatti and M. G. Everett, Soc. Networks, 1997, 19,
243–269.

34 J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat and A. Vespignani,
Adv. Neural Inf. Process. Syst., 2006, 18, 41 http://arxiv.org/abs/
cs.ni/0504107.

35 S. Wachi, K. Yoneda and R. Wu, Bioinformatics, 2005, 21,
4205–4208.

36 Q-Value, [http://faculty.washington.edu/jstorey/qvalue/].

D
ow

nl
oa

de
d 

by
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
 o

n 
25

 J
an

ua
ry

 2
01

2
Pu

bl
is

he
d 

on
 1

6 
Fe

br
ua

ry
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0M

B
00

30
9C

View Online

http://dx.doi.org/10.1039/c0mb00309c

