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Abstract

Background: Although dietary ketogenic essential amino acid (KAA) content modifies accumulation of hepatic lipids, the
molecular interactions between KAAs and lipid metabolism are yet to be fully elucidated.

Methodology/Principal Findings: We designed a diet with a high ratio (E/N) of essential amino acids (EAAs) to non-
EAAs by partially replacing dietary protein with 5 major free KAAs (Leu, Ile, Val, Lys and Thr) without altering
carbohydrate and fat content. This high-KAA diet was assessed for its preventive effects on diet-induced hepatic
steatosis and whole-animal insulin resistance. C57B6 mice were fed with a high-fat diet, and hyperinsulinemic ob/ob
mice were fed with a high-fat or high-sucrose diet. The high-KAA diet improved hepatic steatosis with decreased de
novo lipogensis (DNL) fluxes as well as reduced expressions of lipogenic genes. In C57B6 mice, the high-KAA diet
lowered postprandial insulin secretion and improved glucose tolerance, in association with restored expression of
muscle insulin signaling proteins repressed by the high-fat diet. Lipotoxic metabolites and their synthetic fluxes were
also evaluated with reference to insulin resistance. The high-KAA diet lowered muscle and liver ceramides, both by
reducing dietary lipid incorporation into muscular ceramides and preventing incorporation of DNL-derived fatty acids
into hepatic ceramides.

Conclusion: Our results indicate that dietary KAA intake improves hepatic steatosis and insulin resistance by modulating
lipid synthetic pathways.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) caused by persistent

hepatic steatosis affects up to one-third of the US population [1,2].

Because NAFLD is associated with hepatic insulin resistance and

can further progress to non-alcoholic steatohepatitis (NASH),

there is a critical need to elucidate the molecular pathogenesis of

NAFLD so that nutritional strategies can be developed for its

prevention and treatment [1,3]. In particular, elevated concen-

trations of ‘‘lipotoxic lipids’’ such as diacylglycerols and ceramides

have been recognized as factors contributing to impaired insulin

signaling in non-adipose tissues [4,5]. Understanding how to

effectively modulate the levels of these lipid intermediates through

dietary interventions is a key step toward controlling NAFLD and

related disorders.

Previous studies have shown that dietary withdrawal of the

ketogenic amino acid (KAA) lysine or threonine induces severe

hepatic steatosis in rodents [6,7]. Furthermore, a role for the

amino acid deprivation sensor GCN2 in regulating hepatic lipid

homeostasis has been recently revealed [8]. Certain KAAs,

especially leucine, are reported to modulate insulin signaling via

the mammalian target of rapamycin complex 1 (mTORC1) and

the downstream ribosomal protein S6 kinase 1 (S6K1) [9,10].

Activation of mTORC1 by nutritional overloading is believed to

induce insulin resistance in obese subjects [11]. In fact, continuous

infusion of amino acids has been shown to induce insulin

resistance in human muscle through activation of the mTOR

pathway [12]. More recently, the combination of dietary

branched-chain amino acids (BCAAs) and fat over-intake was

shown to induce insulin resistance in rats [13] .

In contrast to those studies exhibiting detrimental effects of

amino acids on NAFLD and insulin signaling, several clinical trials

and animal experiments have demonstrated that KAA supple-

mentation can have beneficial effects on insulin sensitivity and/or
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obesity. For instance, leucine feeding in mice attenuated high-fat-

induced obesity, hyperglycemia and hypercholesterolemia [14],

and an orally administered KAA mixture of leucine, isoleucine,

valine, threonine and lysine improved insulin sensitivity in elderly

patients with type-2 diabetes [15]. Furthermore, increased

availability of BCAAs in knockout mice harboring a deletion of

mitochondrial BCAA transaminase (BCATm) preserved muscle

insulin sensitivity in response to long-term high-fat feeding [16].

Thus, the role of essential amino acids (EAAs), and KAAs in

particular, in the etiology of insulin resistance and hepatic steatosis

remains controversial.

In the present study, we designed a novel diet with an

elevated ratio of EAA to non-EAA (high-E/N diet) and

combined it with either high-fat or high-sucrose feeding. A

substantial fraction of dietary protein in the high-E/N diet was

replaced with a mixture of 5 free KAAs (leucine, isoleucine,

valine, lysine and threonine) without altering dietary carbohy-

drate and fat content. We demonstrate that dietary KAA

fortification prevented hepatic steatosis in mouse models of diet-

induced obesity (DIO). Measurement of lipid species and

lipogenic fluxes provided further insight into the underlying

preventive mechanism.

Results

Manipulation of dietary E/N ratio by partial protein
replacement with free KAA

In the present study, the amino acid composition of a standard

low-fat diet (STD), high-fat diet (HFD) or high-sucrose diet (HSD)

was manipulated by replacing a fraction of dietary proteins with a

mixture of free amino acids. For instance, two different types of the

high-fat diet were prepared. The first one was a control diet

containing 15% of basal casein and 8% of a free amino acid

mixture, which replicated the original casein amino acid

composition (‘‘casein-mimic free AA’’). The other was a high-

KAA diet containing also 15% of basal casein and 8% of a selected

KAA mixture in place of the casein-mimic free AAs (Figure 1A).

This increased dietary E/N ratio from 0.8 (control) to 1.8

depending on the level of KAA replacement. Five major KAAs

most commonly found in dietary proteins—leucine, isoleucine,

valine, lysine and threonine—were included in the KAA mixture.

The nutrient and energy compositions of the diets used in the

study are compared in Supplemental Table S1. The total amount

of amino acids was normalized among diets by adding varied

amounts of the casein-mimic free AA mixture, if necessary.

Figure 1. Summary of dietary ketogenic amino acid manipulation. (A) High ketogenic amino acid (KAA) diets were prepared by replacing
dietary protein with a free KAA mixture of leucine, lysine, isoleucine, valine and threonine (for 1.8 E/N-ratio diet) or KAA plus casein-mimic free amino
acid mixture (for 1 and 1.2 E/N-ratio diets). (B) Food intake by C57B6 mice was calculated on the basis of mean energy consumption (kcal/day)
throughout an 8-week experimental period. Daily intake (mean+/2SEM, n = 9 for each group) of essential amino acids (EAA) (C) and non-EAA (NEAA)
(D) in mice fed a high-fat diet with varied ratios of E/N (Table S1) were calculated based on daily food intake and amino acid composition of each diet.
The five major KAA supplemented to the high E/N diets are distinguished by closed symbols.
doi:10.1371/journal.pone.0012057.g001
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When fed to C57B6 mice over an 8-week experimental period,

caloric intake was not significantly different across the various diets

(Figure 1B). Therefore, high-E/N diet ingestion resulted in

considerably higher amounts of KAA intake (BCAA, lysine and

threonine increased between 28% and 85% in comparison to

control) and moderately decreased intake of other amino acids

(between 2% and 32% in comparison to control) (Figures 1C, D).

Effect of high-KAA diet on physiologic alterations
induced by high-fat feeding

We confirmed in a preliminary experiment that increases in

dietary protein (casein) levels from 15 to 25% had only slight

effects on physiologic alterations induced by high-fat feeding in

C57B6 mice, except that plasma cholesterol level increased

significantly on a 25% casein diet (Figure S1). In contrast to this

‘‘high-protein diet’’, the high-KAA diets (E/N.1) suppressed

many of the physiologic alterations induced by high-fat feeding in

a E/N-dependent manner. Body weight gain due to high-fat

feeding was significantly reduced with increasing E/N ratio

(Figure 2A). At the end of an 8-week experimental period, fat

weight decreased by 31% in the E/N = 1.8 group as compared

with the control HFD group (Figure 2B). Oxygen consumption in

the light and dark phase increased by 13 and 9%, respectively

(Figure 2C). On the other hand, although respiratory quotient

(RQ) decreased to 0.8 in the dark phase in HFD groups, it was not

affected by KAA fortification (Figure 2D). Since high-protein diets

are known to increase kidney weight in rodents, we determined

whether KAA fortification would elicit a similar response.

However, no significant increase was observed, suggesting that

the high-E/N diets used in this study do not lead to protein

overloading effects (data not shown).

Table 1 illustrates postprandial variables at the end of the 8-

week experimental period. High-fat feeding of wild-type mice for

8 weeks is sufficient to induce hyperinsulinemia but not apparent

hyperglycemia. The high-KAA diet significantly reduced post-

prandial insulin as well as plasma cholesterol, while increasing b-

hydroxybutyrate. In addition, the high-KAA diet significantly

reduced leptin, due to the reduction of fat weight. There were no

clear differences in plasma glucose, FFA, IL-6, TNF-a, and resistin

among 4 high-fat groups irrespective of KAA fortification. The

high-KAA diet had no effect on most plasma amino acid levels

Figure 2. Effects of high KAA diets on high-fat induced alterations. Growth curves (A), fat (subcutaneous, epididymal and perinephric)
weights (B), oxygen consumption (C), and respiratory quotient (D) of C57B6 mice fed for 8 weeks with varying E/N ratios due to KAA fortification
(mean+/2SEM, n = 9 for each group). For oxygen consumption and respiratory quotient, mean values were obtained over 3 days following a week of
acclimatization to the metabolic chamber, and only the results from the highest KAA diet (E/N = 1.8) are separately presented in the light and dark
phase. *: p,0.05 for all the HFD control groups as compared to STD group; #: p,0.05 for all the high KAA (high E/N) groups as compared to HFD
control.
doi:10.1371/journal.pone.0012057.g002
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except for threonine, which increased approximately 2-fold at E/

N = 1.8 relative to E/N = 0.8 (Table S4).

Effects of high-KAA diet on hepatic steatosis and its
metabolic consequences

Hepatic lipid content and histology were compared in C57B6

mice between groups fed with either a standard diet (STD), high-

fat diet (cont), or KAA-fortified high-fat diet (high E/N) for

8 weeks. The high-KAA diet (E/N = 1.8) noticeably improved

hepatic steatosis (Figure 3A) and significantly reduced liver weight

coinciding with reductions in hepatic triglyceride and cholesterol

content of 72% and 59%, respectively (Table 2). The high-KAA

diet also normalized plasma VLDL-triglyceride and LDL-

cholesterol elevations caused by HFD feeding (Figure 3B).

To further understand the antagonizing effects of the high-KAA

diet on hepatic steatosis, metabolic flux analysis was applied to

quantify changes in de novo lipogenesis (DNL) pathways. Figure 3C

summarizes different fatty acid sources contributing to hepatic and

adipose triglyceride (TG) in C57B6 mice at 2 and 8 weeks. The

contribution of DNL to TG-palmitate (c16:0), TG-stearate (c18:0)

and TG-oleate (c18:1) in fat tissue was generally small and was

further decreased with HFD feeding. In contrast, the contribution

of DNL to hepatic TG-palmitate and TG-oleate was substantial at

8 weeks and was further increased by HFD feeding. However,

hepatic incorporation of DNL-derived fatty acids into TG was

completely suppressed by the high-KAA diet. Relative hepatic

fluxes clearly indicate a dissociation of elongase and desaturase

pathways, with simultaneous elevation of elongase flux and

suppression of desaturase flux (Figure 3D).

To confirm these findings, liver expression profiles of 70 genes

involved in amino acid, carbohydrate and lipid metabolism were

measured in response to HFD feeding with or without KAA

supplementation. Significance level of each gene is shown in

Figure 4A derived from a three-way ANOVA comparison (STD,

HFD and HFD+KAA). The genes are organized into rough

groupings and are visualized as either orange (p,0.05) or blue

(p.0.05) depending on their significance level (Table S6). Overall,

the DNL pathway stands out as having a majority of genes

significantly altered in their expression due to changing dietary

composition. As for individual genes, the high-KAA diet repressed

SREBP-1c but induced SHP expression (Figure 4B). Expression of

other nuclear receptors including PPARa and LXRa did not change.

In addition, down-regulation of SHP as well as up-regulation of

SREBP-1c, FAS and SCD1 genes within the de novo lipogenesis

pathway was clearly dependent on E/N ratio (Figure 4C).

Effects of high-KAA diet on hyperinsulinemia and
lipotoxic metabolite synthesis

Long-term high-fat feeding is reported to induce insulin resistance

in C57B6 mice [17]. Postprandial plasma glucose and insulin were

measured throughout the 8-week experimental period. Though HFD

feeding caused only slight increases in blood glucose in comparison to

the STD group (Figure 5A), significant increases in both insulin levels

and calculated HOMA-IR values were evident from 2 to 8 weeks

(Figures 5B, C). However, the high-KAA diet fully normalized plasma

insulin levels and HOMA-IR (Figures 5B, C). The high-KAA diet was

shown to improve both glucose (GTT) and insulin tolerance test (ITT)

response after 8 weeks of feeding, which were slightly impaired by

HFD feeding (Figures 5D, E). Overall, the progression of insulin

resistance caused by HFD feeding appears to be associated with the

enhancement of hepatic DNL observed from 2 to 8 weeks (Figure 3C).

Changes in insulin signaling in both liver and muscle were

assessed by measuring insulin-induced Akt phosphorylation at

8 weeks. HFD feeding reduced Akt phosphorylation in muscle but

not in liver, and the high-KAA diet normalized this effect in

muscle (Figure 6A). Similarly, changes in muscular mTOR

pathway signaling were probed by measuring insulin-induced

phosphorylation of S6 kinase 1 (S6K1). HFD feeding augmented

S6K1 and the high-KAA diet normalized this increase (Figure 6B).

Further, muscular AMP phosphorylation and UCP-3 expression

were reduced by HFD feeding, but dietary KAA fortification

partially reversed this effect (Figures 6C, D).

Because lipotoxic metabolites such as ceramides and diacylgly-

cerols (DAGs) are believed to be responsible for HFD-induced

insulin resistance [4], GC-MS metabolite profiling was performed

on liver and muscle biopsies. When compared with STD feeding,

HFD feeding for 8 weeks increased DAG and ceramide

concentrations in both tissues, while no obvious elevations were

Table 1. Plasma metabolic parameters in C57B6 mice fed HFD with or without high E/N manipulation by KAA.

STD HFD HFD+KAA

E/N ratio 0.8 0.8 1.0 1.2 1.8

(n = 9) (n = 9) (n = 9) (n = 9) (n = 9)

Glucose (mmol/l) 11.860.6 14.160.4* 13.660.5* 12.860.6 13.760.6*

Triglyceride (mg/dl) 7266 7063 6564 77610 6463

FFA (mmol/l) 0.4860.03 0.3860.03* 0.3560.03* 0.3760.03* 0.3860.03*

Cholesterol (mg/dl) 11765 15866* 14567* 13265# 12865#

Acetoacetate (mmol/l) 14464 13163* 13363* 13666 13764

b-OH-butyrate (mmol/l) 203631 185620 167616 192632 249633#

Insulin (ng/ml) 0.860.1 3.760.5* 2.760.5* 2.160.3*,# 1.860.3*,#

Leptin (ng/ml) 4.360.4 40.569.0* 31.567.0* 14.263.6*,# 13.363.4*,#

IL-6(pg/ml) N.A. 4.660.4 4.760.2 4.360.7 4.560.4

TNFa(ng/ml) N.A. 11.660.1 11.660.0 11.660.0 11.660.3

Resistin (ng/ml) N.A. 6.360.5 6.960.6 5.060.6 5.060.6

Data represent mean +/2 SE. *, p,0.05 for all high E/N groups compared with STD group (E/N = 0.8); #, p,0.05 for high E/N groups with HFD control. N.A., not analyzed.
doi:10.1371/journal.pone.0012057.t001
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observed in FFA species (Figures 7A, B). The high-KAA diet

prevented HFD-induced increases in ceramide and DAG levels

and further lowered FFA concentrations relative to the control

diet (Figures 7A, B). Stearoyl-ceramide (c18 Cer) and palmitoyl-

ceramide (c16 Cer) were the major ceramide species in muscle

and liver, respectively. It is noteworthy that HFD feeding

increased muscular c18 Cer time-dependently, but not hepatic

c16 Cer (Figure 7C). This sharp increase in muscular c18 Cer is

associated with postprandial hyperinsulinemia shown in

Figure 5A.

Stable isotope labeling experiments were applied to determine

the relative contribution of DNL to each ceramide fatty-acyl

group. As shown in Figure 7D, the extent of isotopic labeling in the

sphingosine and fatty-acyl groups of ceramide molecules was

analyzed, where f1 denotes fatty acids incorporated into the

sphingosine group, while f2 and f3 denote fatty acids incorporated

into the fatty-acyl groups of hepatic c16 ceramide and muscular

c18 ceramide, respectively. The results clearly show that both the

sphingosine and fatty-acyl groups of liver c16 ceramide were

mostly derived from DNL, whereas those of muscle c18 ceramide

were derived from non-DNL sources, presumably dietary lipids.

These data indicate that ceramide synthesis in the muscle relies

primarily on dietary lipids, and therefore muscular ceramide

content is expected to be more susceptible to the total content and

feeding duration of dietary lipids. Thus, we hypothesize that if

muscle is protected from accumulation of lipotoxic lipids,

peripheral insulin resistance and postprandial hyperinsulinemia

will improve.

Figure 3. Prevention of high-fat induced hepatic steatosis by high-KAA diet. Samples were obtained from C57B6 mice fed for 2 or 8 weeks
with STD, HFD or high-KAA HFD (E/N = 1.8). (A) Liver histology of hematoxylin-eosin staining (top) and oil red O staining (middle), and macroscopic
appearances (bottom). (B) FPLC analyses of frozen plasma triglycerides (top) and cholesterol (bottom). Fractions 15–19: very low density lipoprotein
(VLDL) and chylomicrons; fractions 20–26: intermediate density lipoproteins, low density lipoprotein (LDL), and large high density lipoprotein;
fractions 27–33: high density lipoprotein (HDL). (C, D) Metabolic fluxes of de novo lipogenesis (DNL) pathways were analyzed by identifying fatty
sources for hepatic triglycerides (C) and estimating the in vivo relative contributions of fatty acid synthase (FAS), elongase and desaturase fluxes using
deuterated water labeling and mass isotopomer distribution analysis (D) (see Materials and Methods). The contribution of DNL to total triglyceride-
fatty acids (TG-FA) in the liver (C, left) or epididymal fat tissue (C, right) was separately estimated for palmitate (c16:0) and oleate (c18:1). Black and
blue bars represent DNL- and non-DNL sources, respectively. The contributions of elongase and desaturase (D) were assessed by DNLc18:0/DNLc16:0

and DNLc18:1/DNLc18:0, respectively. All values are expressed as mean+/2SEM (n = 6). In panel C, p,0.05 of DNL-derived FA and total FA compared to
STD are indicated as * and #, respectively. In panel D, *: p,0.05 for all high-fat groups as compared to STD group; #: p,0.05 for the high-KAA group
as compared to HFD control.
doi:10.1371/journal.pone.0012057.g003

Amino Acids Repress Liver Fat

PLoS ONE | www.plosone.org 5 August 2010 | Volume 5 | Issue 8 | e12057



High-KAA diet prevents diet-induced hepatic steatosis in
a hyperinsulinemic mouse model

To further understand the interactions between dietary amino

acid composition and NAFLD development, we investigated the

effect of a high-KAA diet on hepatic steatosis and insulin

resistance in indigenously hyperinsulinemic ob/ob mice. The ob/

ob mice were fed a HFD or high-sucrose diet (HSD) for 2 weeks.

Cholate (CA) was administered as a positive control to suppress

hepatic steatosis, since CA is known to inhibit hepatic DNL

through FXR pathways [18,19]. Both the high-KAA diet and CA

administration separately improved hepatic steatosis (Figure 8A)

and reduced liver weight and triglyceride content (Table 3) in

response to either HFD or HSD. Although CA significantly

increased hepatic cholesterol, the high-KAA diet had the opposite

effect (Table 3). The high-KAA diet also reduced plasma GOT

and GPT levels under either dietary condition, while CA led to

marked increases in these parameters. Furthermore, the high-

KAA diet did not induce changes in postprandial plasma insulin

and glucose but partly reduced cholesterol and triglyceride levels

under the HFD condition.

Metabolic flux analysis clearly revealed that the high-KAA

diet reduced hepatic DNL under HFD or HSD feeding, thus

explaining the reduction in hepatic triglyceride-fatty acid

content (Figure 8B). Under HFD but not HSD feeding,

desaturase flux was decreased by either the high-KAA diet or

CA administration (Figure 8C), similar to the observation in

C57B6 mice shown in Figure 3D, but in this case elongase flux

was not affected.

Figure 4. Changes in expression profiles of hepatic metabolic genes and regulators under different dietary conditions. Samples were
obtained from C57B6 mice (n = 9 for each group) fed for 8 weeks with STD, HFD or high-KAA (high E/N) HFD. (A) Diet-dependent changes in
expressions of 70 hepatic genes (Table S6) involved in different metabolic pathways were assessed by ANOVA probability. Orange squares represent
genes having significantly different expression levels (p,0.05) among 3 different diets (HFD, STD, and HFD plus KAA (E/N = 1.8)). Relative gene
expression levels (STD = 1, normalized with 18S ribosomal RNA) of representative transcription factors and nuclear receptors (B), and fatty acid
synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), SREBP-1c and SHP under different dietary conditions (C). All values are expressed as mean+/2SEM.
*: p,0.05 for all high-fat groups as compared to STD group; #: p,0.05 for the high-KAA (high-E/N) groups as compared to HFD control.
doi:10.1371/journal.pone.0012057.g004

Table 2. Hepatic lipid contents in C57B6 mice fed HFD with
or without high E/N manipulation by KAA.

STD HFD

E/N ratio 0.8 0.8 1.8

(n = 9) (n = 9) (n = 9)

Liver (g) 1.660.1 1.960.1* 1.260.0#

Triglyceride (mg/g) 106629 209617* 60612#

Cholesterol (mg/g) 9.060.3 13.560.5* 5.560.5#

Data represent mean +/2 SE. C57B6 mice were housed with indicated diets for
8 weeks. Liver lipids were determined as described in Materials and Methods.
*, p,0.05 for high E/N groups compared with STD group (E/N = 0.8); #, p,0.05
for high E/N group (E/N = 1.8) with HFD control (E/N = 0.8).
doi:10.1371/journal.pone.0012057.t002
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Discussion

Manipulation of dietary E/N ratio by ketogenic EAA
Bidirectional modifications of dietary protein content (restric-

tion or excess) have been studied in terms of both their pathogenic

and preventive effects on physiological alterations, such as insulin

resistance and metabolic syndrome [20,21]. Although classic

studies showed an improvement in high-fat-induced metabolic

changes by EAA supplementation in rodents [22], these findings

have not been translated into practical measures for counteracting

the growing tide of health problems associated with obesity and

metabolic syndrome.

In most dietary proteins, EAA to NEAA ratios (E/N) stay within

an almost constant range from 0.5 to 0.8 [23]. NEAAs primarily

consist of glucogenic amino acids such as glutamine and aspartate,

while EAAs consist of ketogenic amino acids such as BCAAs and

lysine. Therefore, several points should be considered with regard

to dietary KAA supplementation. First, an increase in protein

content via a natural diet achieves higher KAA intake but also

results in simultaneously higher glucogenic amino acid intake,

which is often associated with high fat intake. Second, from a

practical viewpoint, the amount of dietary protein should rather be

managed downward in a diabetic or pre-diabetic condition,

because renal failure is one of the common diabetic complications

[24]. Third, in animal experiments amino acids or KAA are often

loaded through drinking water, which does not result in consistent

changes in the balance between amino acids and lipids. Fourth,

anorexic effects of KAA loading must be considered, particularly

to rodents. The accompanied decrease in calorie intake would

distort metabolism as a whole, making the interpretation of

experimental results difficult. Leucine, methionine and histidine

have been characterized as having a robust influence on food

intake in rodents [25]. Among these, leucine was reported to

stimulate mTOR signaling directly in the hypothalamus, leading

to decreased food intake [26,27] . Lastly, amino acid imbalance

caused by supplementing either a single amino acid or a few

specific amino acids will negatively impact the so-called ‘‘meta-

bolic value’’ of the diet in question. Taken together, these factors

have largely confounded previous attempts to assess the direct or

upstream metabolic effects of KAAs.

In our preliminary experiments, we did not observe a reduction

in food intake associated with feeding a mixture of selected KAAs

Figure 5. Attenuation of high-fat induced insulin resistance by dietary KAA. Plasma glucose (A), insulin (B) and calculated indices of HOMA-
IR (C) in C57B6 mice 4 weeks before and 8 weeks after feeding with STD, HFD or high-E/N HFD (E/N = 1.8), under 3-hour fasting condition. Using
C57B6 mice (n = 6 for each group) fed for 8 weeks with STD, HFD or the high-KAA (high E/N) diet (E/N = 1.8), glucose tolerance tests (GTT) (D), or
insulin tolerance tests (ITT) (E) were performed by intraperitoneal glucose or insulin administration (at time = 0) after overnight fasting. *: p,0.05 for
all high-fat groups as compared to STD group.
doi:10.1371/journal.pone.0012057.g005
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to rats under a high-fat diet condition, suggesting that utilization of

multiple KAAs together could alleviate the potential for anorectic

effects. In contrast, addition of methionine or histidine to the KAA

mixture effectively worsened its anorectic effect. Thus, we

formulated our KAA diet by replacing part of the natural

casein-derived protein with a KAA mixture that excluded the

‘‘anorectic’’ methionine and histidine. This mixture was composed

of free BCAAs plus lysine and threonine, which are quantitatively

the major KAAs in most animal proteins. This enabled us to

achieve loading of multiple KAAs and a high E/N ratio, while

avoiding changes to dietary fat and carbohydrate intake as well as

total amino acid intake. Although further optimization of our

formulation will be required to elucidate the contribution of each

individual amino acid, the KAA diet developed in the present

study exhibits a marked capacity to modulate high-fat-induced

metabolic alterations and to prevent subsequent pathogenesis.

Effect of high KAA diet on hepatic steatosis
Hepatic steatosis can be induced by various nutrient conditions

such as high-fat overfeeding or KAA deprivation [7,28], suggesting

metabolic interactions between dietary fat and KAA intake. The

present study provided evidence that a high-KAA diet can prevent

high-fat-induced hepatic steatosis. Hepatic lipids are generally

considered to be supplied from extra-hepatic lipids under high-fat

feeding. In contrast, the major source of hepatic lipids under high-

carbohydrate feeding is hepatic de novo lipogenesis (DNL) [29].

Induction of fatty liver in C57B6 mice usually requires dietary

manipulation of lipids or carbohydrate. On the other hand, ob/ob

mice spontaneously develop fatty liver, though similar dietary

manipulations can facilitate fatty liver formation and induce more

severe pathogenesis. In the present study, we applied a fortified E/

N diet based upon KAA supplementation to significantly lower

hepatic lipids in both wild-type and ob/ob mice. Because ob/ob

mice were fed either a high-fat or high-sucrose diet, KAA

supplementation apparently suppressed not only DNL but also

lipid translocation from extra-hepatic sources. To confirm this, we

applied metabolic flux analysis to quantify DNL in both liver and

fat tissues of ob/ob mice. Our analysis confirmed that hepatic DNL

was lower in the HFD condition compared to the HSD condition.

Unexpectedly, hepatic DNL increased in a time-dependent

manner (2- vs 8-week feeding) in C57B6 mice fed with HFD

and became the major contributor to hepatic TG, although non-

DNL sources of fatty acids also increased slightly over this period.

The high-KAA diet consistently suppressed hepatic DNL in both

mouse strains (C57B6 and ob/ob) and under both dietary

conditions (HFD and HSD) tested in this study, demonstrating

that the reduced hepatic TG content observed was mainly due to

suppression of DNL. Further, the high-KAA diet repressed liver

expression of lipogenic genes such as FAS and SCD1 in an E/N-

dependent manner. Interestingly, this repression in ob/ob mice

appeared to be mediated by the SREBP-1c pathway in the HFD

condition but through the ChREBP pathway in the HSD

condition (Figure S2). Underscoring this hypothesis, liver pyruvate

kinase (L-PK), which is regulated by the ChREBP but not SREBP-

1c pathway, was shown to be repressed with the high-KAA diet

under HSD feeding. Furthermore, up-regulation of SHP by the

high-KAA diet in both strains of mice under HFD feeding can be

reasonably understood because SHP is regulated by FXR and can

act as a suppressor of SREBP-1c [18]. The precise mechanism by

which KAAs modify the expression of these nuclear receptors is

yet to be elucidated. Further metabolite profiling will be needed to

examine specific KAA metabolites, such as keto-acyl-CoAs, which

may affect the expression of lipogenesis-related nuclear receptors.

In C57B6 mice, the high-KAA diet increased plasma b-

hydroxybutyrate (b-OH-butyrate). However, there was no

corresponding increase in liver expression of genes involved in

fatty acid oxidation. As mentioned, all KAAs used in the present

study generate keto-acyl-CoA in the liver. It is well-known that b-

OH-butyrate can be formed from leucine, isoleucine and lysine in

Figure 6. Dietary effects on phosphorylation and expression of
metabolic regulatory proteins in muscle and liver. Samples were
obtained from C57B6 mice (n = 3 for each group) fed for 12 weeks with
STD, HFD or the high-KAA HFD (E/N = 1.8) except for (D), where mice
were fed with the control HFD (cont.) or with HFD under varying E/N
ratios. Total and phosphorylated Akt (p-Akt; Ser473) in the liver and
muscle (A), S6K1 or S6K1-Thr421/Ser424 in the soleus muscle (B), and
total and phosphorylated muscle AMPKa (C) were analyzed by Western
blot. (D) Gene expression of UCP-3 in the soleus muscle was quantified
by RT-PCR. Values are expressed as mean+/2SEM (n = 9). Symbols in (D)
signify significant difference (p,0.05) for the comparison with STD (*)
or control HFD (#).
doi:10.1371/journal.pone.0012057.g006
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addition to fatty acids. In the present study, however, the precise

carbon source of plasma b-OH-butyrate is not clear, and it is

possible that increased hepatic lipid oxidation may also

contribute to the reduction of hepatic TG observed on the

high-KAA diet.

Is insulin resistance a prerequisite to liver steatosis
Lipid profiling of liver and muscle in the present study revealed

that both DAG and ceramide concentrations were lowered by the

high-KAA diet. DAG is considered a primary inducer of insulin

resistance in response to excess unsaturated fat feeding [30,31],

while ceramide is synthesized directly from saturated fatty acids

and antagonizes insulin action in muscle [4]. Lard was used as the

primary dietary fat source in the present study, and thus both

palmitate and oleate, the major constituents of lard, would

contribute to the induction of insulin resistance. DNL-derived fatty

acids were found to contribute more to ceramide synthesis in liver

than in muscle, but a significant time-dependent increase in

muscle ceramide was observed between 2 and 8 weeks of HFD

feeding. Liver ceramide levels are expected to be in dynamic

equilibrium with other lipid species, as enhanced triglyceride

synthesis may compete directly with ceramide synthesis and

increased secretion of lipoproteins is expected to decrease

ceramide levels. Stable isotopic flux analysis revealed that muscle

ceramides relied heavily on dietary lipids as their FFA source. In

addition, our data show that DNL contributed relatively less

stearoyl- than sphingosine-moiety to muscle c18 ceramide,

suggesting that low SCD1 activity in muscle could be responsible

for the increased dependency of muscle ceramide accumulation on

dietary fat. Therefore, our present finding of reduced muscular

c18 ceramide accumulation in response to a high-E/N diet could

be attributable to the reduced conversion of both DNL-derived

palmitate into the sphigosine-group and dietary lipids into the

stearoyl-group of c18 ceramide. In a previous study, Monetti et

al.[32] report that various lipids, including TG, DAG and

ceramides, accumulated in mouse liver as a result of overexpres-

sion of acyl-CoA:diacylglycerol acyltransferase (DGAT) but

without associated insulin resistance, and they concluded that

hepatic steatosis could ensue independently of insulin resistance.

Further, another report [33] illustrates that muscular insulin

resistance is directly related to reduced muscular glucose

utilization and hepatic steatosis. Furthermore, it has been reported

that elevated muscular ceramides, but not hepatic ceramides, lead

to insulin resistance [32]. Thus, muscle appears to be more

susceptible to lipotoxicity than liver, and readily develops an

insulin resistant state. Based on those reports, the prevention of

hepatic steatosis by high KAA intake could be at least partly

attributed to protection against peripheral insulin resistance and

enhanced glucose utilization by the liver. Indeed, our results

indicate that, even when insulin signaling in the liver remained

intact, muscle insulin signaling was more easily impaired by HFD

feeding.

Figure 7. Effect of high-KAA diet on the production of hepatic and muscular lipotoxic metabolites. Samples were obtained from C57B6
mice (n = 6 for each group) fed for 8 weeks with STD, HFD or the high KAA HFD (E/N = 1.8), except for (C) where mice were sampled at 2 weeks in
addition to 8 weeks. Lipid species of free fatty acids (FFA), diacylglycerols (DAG) and ceramides (Cer) in the liver (A) and gastrocnemius muscle (B)
were quantified using GC-MS, where c16 Cer, c18 Cer, c20 Cer and c22 Cer correspond to palmitoyl-ceramide, stearoyl-ceramide, arachidyl-ceramide
and docosanoyl-ceramide, respectively. Changes in liver c16 Cer and muscle c18 Cer concentrations were tracked between 2- and 8-week feeding
periods (C). Metabolic pathway fluxes of hepatic and muscular ceramides were assessed by quantifying the contributions from palmitoyl-CoA (f1, f2)
and stearoyl-CoA (f3) (see D left). The contribution of DNL-derived FA to ceramide synthesis was evaluated based on deuterium labeling of
sphingosine- and acyl-groups (D), whereas non-DNL derived FA is illustrated with a blue column on the bottom of each bar. All values are expressed
as mean+/2SEM (n = 6). *: p,0.05 for all high-fat groups as compared to STD group; #: p,0.05 for the high-KAA group as compared to HFD control.
doi:10.1371/journal.pone.0012057.g007
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The high-KAA diet increased muscular UCP-3 expression

under HFD conditions, which could lead to enhanced energy

expenditure associated with increased fatty fuel oxidation. Choi et

al.[34] claim that overexpression of muscle UCP-3 in mice

protected them from HFD-induced insulin resistance, and Zhang

et al.[14] report that leucine loading in mice increased muscular

and fatty UCP-3 expression. The precise mechanism linking

amino acid supplementation with UCP-3 expression, however,

remains elusive. High-fat feeding was reported to reduce muscle

AMP-activated protein kinase (AMPK), a possible UCP-3

regulator [35], and muscular AMPK reduction is expected to

decrease glucose disposal. A few studies along these lines suggested

a causal relationship between lipotoxic metabolites and decreased

AMPK phosphorylation [36,37]. In agreement with this hypoth-

esis, our data demonstrate that high KAA intake reversed the

inhibition of AMPK phosphorylation in the presence of a high-fat

diet. Thus, the reduction of lipotoxic lipids could be one of the

major pathways by which the high-KAA diet maintains muscle

AMPK and extrahepatic substrate utilization.

The high-KAA diet was fed to leptin-deficient ob/ob mice that

had already developed noticeable insulin resistance and hepatic

steatosis before KAA treatment. As a result, 2 weeks of feeding

significantly reduced hepatic lipids, though hyperinsulinemia

evidently still remained. Thus, the acute reduction of hepatic

lipids by the high-E/N diet seems to occur through independent

mechanisms of preventing peripheral insulin resistance in C57B6.

Although it was not clear why the high-E/N diet did not affect

postprandial insulin levels in ob/ob mice, muscle lipotoxic lipids

were considerably higher before KAA treatments than those in

high-fat treated C57B6 mice. Therefore, this may explain why

short-term feeding of the high-E/N diet was not sufficient to

reduce lipotoxic lipids to the point where peripheral insulin

resistance was restored. Though further study is to be done,

altered expression of nuclear receptors such as SREBP-1c and

SHP by the high-E/N diet should be at least one of the factors

contributing to an acute reduction of hepatic lipids.

Protein overfeeding and KAA fortification
Protein and lipid overfeeding is reported to induce an insulin

resistant state depending on the ribosomal protein S6 kinase 1

(S6K1) and its effector, mammalian target of rapamycin (mTOR)

pathway [11]. We found that a high-protein diet induces global

elevation of KAA levels [38,39] . Elevation of circulating amino

acids such as alanine and BCAAs has been recognized as a marker

of protein overfeeding and is often associated with an insulin

resistant state, for instance, in obese individuals [40,41]. Activation

Figure 8. High dietary high KAA improves hepatic steatosis in hyperinsulinemic mouse model. Samples were obtained from ob/ob mice
(n = 6 for each group) fed for 2 weeks with either a high-sucrose diet (HSD), or HFD in the presence (high E/N) or absence (cont.) of KAA fortification
(E/N = 1.8) or cholate (+CA), which was used as an anti-hepatic-steatosis control agent. (A) Liver histology of hematoxylin-eosin staining (top) and oil
red O staining (middle), and macroscopic liver appearances (bottom). (B,C) Metabolic fluxes of DNL pathways were analyzed by identifying fatty
sources for hepatic triglycerides and estimating the in vivo relative contributions of fatty acid synthase (FAS), elongase and desaturase using
deuterated water labeling and mass isotopomer distribution analysis (see Materials and Methods and Figure 3D). The contributions of elongase and
desaturase (C) were assessed by DNLc18:0/DNLc16:0 and DNLc18:1/DNLc18:0, respectively. All values are expressed as mean+/2SEM (n = 6). In panel B,
p,0.05 for DNL-derived FA and total FA versus the control group are indicated as * and #, respectively. In panel C, p,0.05 versus the control group
is indicated as *.
doi:10.1371/journal.pone.0012057.g008
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of S6K1 and mTOR expressions were confirmed in human

muscle by simulation of protein overfeeding with a constant

infusion of 20 proteinogenic amino acids [12,41]. Because our

high-KAA diet neither generated elevated plasma amino acids

(Table S4) nor activated the expression of muscular S6K, the

metabolic impact of KAA fortification appears fundamentally

different from protein overfeeding.

Conclusion
In summary, we show that dietary amino acid manipulation, in

which protein is partially replaced by free ketogenic essential

amino acids, can modulate metabolic alterations and prevent

hepatic steatosis in mice models of diet-induced obesity. We

conclude that increasing dietary ketogenic amino acids may offer a

new preventive and therapeutic approach to address non-alcoholic

fatty liver disease.

Materials and Methods

Animals
All studies were reviewed and approved by the Animal Care

Committee of Ajinomoto Co., Inc. and Massachusetts Institute of

Technology. Ten-week-old male C57B6 mice were obtained from

Charles River Laboratory, Japan Inc. and Taconic Farms Inc.

Ten-week-old male ob/ob mice were obtained from Jackson

Laboratory. All mice were housed in colony cages, maintained

on a 12:12-hour light and dark rhythm with free access to water.

Blood was collected in tubes on ice containing ethylenediaminete-

traacetatic acid (EDTA; NONCLOT-D, Daiichi Pure Chemicals,

Tokyo, Japan). Liver, epididimal fat and gastrocnemius muscle

were collected for lipid and gene expression analyses. Soleus was

collected for western-blot analysis. All collected tissues were

immediately clamped into liquid nitrogen and stored at 280uC.

Diets
For C57B6 mice experiments, standard diet (STD), high-fat

diet (HFD) and KAA-fortified HFD (HFD+KAA) were

prepared based on the AIN-93G composition (Table S1, S2).

The casein-mimic free amino acid mixture (CAAM) or KAA

mixture was used to replace the part of protein (Table S1, S2).

Using partial protein replacement by free KAA, E/N ratio in

diet was graded from 0.8 (control) to 1.8, where to avoid

changes in amounts of dietary total amino acids, fat and

carbohydrates, total amino acids including protein-amino acids

were equalized among the groups by adding above mentioned

CAAM up to that of 23%, if necessary. For ob/ob mice

experiment, high-sucrose diet (HSD) and HFD were prepared

in the presence or absence of KAA fortification (E/N = 1.8).

Cholate (CA) was used as a positive control of anti-hepatic

steatosis agent, because CA was known to repress hepatic DNL

through FXR pathways [18,19]. We also purchased STD, HFD

and HFD+KAA from Research Diet Inc.(New Brunswick, NJ)

for tissue lipid analyses (Table S3).

Energy expenditure
Energy expenditure (EE) of individual mice was measured using

indirect calorimetry. An animal was housed in a metabolic cage

for 24 h allowing collection of urine and feces separately [16].

Food was available between 1900 and 0800 h. Oxygen

consumption and CO2 production were determined every 5 min

in an open chamber with a mass spectrometry based O2 and CO2

analyzer ARCO-2000 (ARCO system, Chiba, Japan). Oxygen

consumption was normalized by lean body mass.

Blood biochemistry
Blood glucose, cholesterol and triglyceride were measured using

DRI-CHEM5500 (FUJI films, Tokyo, Japan). Plasma free fatty

acids were determined using an enzymatic method by an

automated kit according to the manufacturer’s specifications

(Wako Pure Chemical Industries Ltd, Osaka, Japan). Ketone

bodies were measured by a ketone test kit (Sanwa Kagaku

Kenkyusho Co., Ltd, Nagoya, Japan). Serum leptin and insulin

were determined using commercial mouse ELISA kits (Seikagaku-

kogyo Co., Tokyo, Japan). Plasma sphingomyelin was analyzed

using a commercial kit (Cayman Chemical, Ann Arbor, Michigan,

USA).

Mouse lipoproteins were prepared by FPLC analysis of plasma

using a Superose 6 column (GE healthcare) on a FPLC system

model 600 from Waters as described previously [42]. A 100-ml

aliquot of pooled plasma from each group was injected onto the

column and separated with a buffer containing 0.15 M NaCl,

0.01 M Na2HPO4, and 0.1 mM EDTA at pH 7.5 using a flow

rate of 0.5 ml/min. Fifty fractions of 0.5 ml each were collected,

with the lipoproteins contained in tubes 15–33. Fractions 15–

19 = very-low-density lipoprotein and chylomicrons; fractions 20–

26 = intermediate -density lipoproteins, low-density lipoproteins,

and large high-density lipoproteins; fractions 27–33 = high-density

lipoprotein.

Glucose and insulin tolerance tests
For glucose tolerance tests, blood glucose was measured at 0, 30,

60, 120 and 150 min after a bolus intraperitoneal glucose

administration (1 mg/g body wt) to overnight-fasted mice. For

insulin tolerance tests, regular human insulin was administered

intraperitoneally (0.75 mU/g) to mice after 4-h food deprivation,

and blood glucose was measured at 0, 30, 60, 120 and 150 min

after insulin injection. The homeostasis model assessment of

insulin resistance (HOMA-IR) index was calculated based on the

conventional formula: HOMA-IR = basal glucose (mmol/l) 6basal

insulin (mU/l)/22.5.

Table 3. Summary of metabolic parameters in ob/ob mice fed
HSD or HFD with or without high E/N manipulation by KAA.

HSD HFD HFD+CA

E/N ratio 0.8 1.8 0.8 1.8 0.8

(n = 6) (n = 6) (n = 6) (n = 6) (n = 6)

Hepatic lipids

Liver (g) 2.760.1 2.460.1# 2.760.1 2.260.0# 1.960.1#

Triglyceride (mg/g) 588657 339631# 529656 285628# 244641#

Cholesterol (mg/g) 13.861.9 9.561.5# 12.162.5 5.560.4# 17.562.0#

Plasma parameters

Glucose (mmol/l) 11.060.3 9.760.6 13.560.9 11.260.2 10.360.8#

Triglyceride (mg/dl) 9065 8765 13267.5 10462# 10166#

Cholesterol (mg/dl) 22765 223610 240617 21166 179610#

Insulin (ng/ml) 13.461.6 12.661.4 12.961.6 12.060.78 6.360.7#

GOT (unit) 230630 15569 141626 7564# 5026146#

GPT (unit) 270629 196610# 172634 10066 5606139#

Data represent mean +/2 SE. Ob/ob mice were housed with indicated diets for
2 weeks. *, p,0.05 for all treatment groups with corresponding HFD or HSD
control (E/N = 0.8).
doi:10.1371/journal.pone.0012057.t003
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Western blot
Liver and muscle tissue (50–100 mg) was homogenized in a

detergent-based lysis buffer (M-PER; Pierce Biotechnology)

supplemented with protease and phosphatase inhibitors. The

extracts were incubated on ice for 20 minutes and then

centrifuged at 15,000 g to remove tissue debris. The supernatants

were saved and frozen at 280uC until analysis. Then, 50 mg of

protein were heat denatured in SDS-PAGE sample buffer and

resolved on denaturing (SDS) 10% polyacrylamide gels (SDS-

PAGE). Fractionated proteins were electrophoretically transferred

to nitrocellulose membranes by standard procedures. Immuno-

blotting was carried out using the following antibodies: anti-p-Akt

(Ser473) (1:1000 dilution, Cell Signaling Technology), anti-p-

S6K1 (Thr421/Ser424) (1:1000 dilution) and anti-p-AMPKa
(Thr172) (1:1000 dilution, Cell Signaling Technology) as indicated

in Figure 6. Membranes were immunoblotted with the following

primary antibodies. Immune complexes were detected by

luminescent image analyzer LAS-3000 (Fujifilm, Tokyo, Japan).

Histology
Formalin-fixed tissues were embedded in paraffin using

standard procedures. Sections at 4mm thick were stained with

Hematoxylin-eosin for general observation, and frozen sections at

5mm thick were stained with Oil Red O and counterstained with

Hematoxylin for visualizing lipids.

Real-time PCR
Total RNA was extracted from the homogenized liver using an

RNAeasy kit (Qiagen, Germantown, MD) following the manu-

facturer’s instructions. mRNA was then extracted from total RNA

preparations using an Oligotex kit (Qiagen) following the

manufacturer’s instructions. Quality and integrity of the RNA

were checked by A260/280 ratio and on a formaldehyde/agarose

gel, respectively. Equal amounts of RNA were reverse transcribed

using Superscript II reverse transcriptase (Invitrogen, Carlsbad,

CA) as per the manufacturer’s instructions. Primers for RT-PCR

were designed using the primer design software Primer3 (Table

S5), and then the sequence homology for related proteins was

checked. 18S ribosomal RNA primers were used as an endogenous

control. RT-PCR was performed on an ABI PrismH 7700

Sequence Detection System (PE Applied Biosystems, Foster CA),

and the data obtained were analyzed using the provided software.

The reaction mixture consisted of 4 ml cDNA template, 10 ml of

Sybr Green PCR master mix (Roche Biochemicals, IN), 2 ml of

0.25–1 mM forward primer, and 2 ml of 0.25–1 mM reverse primer

in a 20 ml reaction volume. The PCR protocol consisted of one

10 min denaturation cycle at 95uC followed by 40 cycles of

denaturation at 95uC for 15 sec and annealing/extension at 60uC
for 1 min. Standard curves for each gene and endogenous 18S

ribosomal RNA control were obtained. The efficiency of PCR

amplification was 100%, and the R2 value was between 0.995 and

0.999. All RT-PCR data were expressed as relative mRNA levels

after normalizing to 18S ribosomal RNA.

Plasma amino acids profiling
Plasma samples and tissues were treated with 2 volumes of 5%

(w/w) trichloroacetic acid (TCA) and then centrifuged to remove

protein as precipitate. The samples obtained were filtered through

an Ultrafree-MC centrifugal filter (Millipore, Billerica, MA). All

samples were kept at 4uC during all steps to minimize chemical

reactions of thiol-metabolites and stored at 280uC. The amino

acid concentrations were measured by an automatic amino acid

analyzer (L-8800, Hitachi, Tokyo, Japan). Briefly, amino acids

separated by cation-exchange chromatography were detected

spectrophotometrically after post-column reaction with ninhydrin

reagent.

Tissue lipid analysis
For tissue metabolite extraction, we employed a biphasic

extraction protocol, with non-polar metabolites partitioning into

a chloroform phase and polar metabolites partitioning into a

methanol/water phase as described previously[43]. Frozen

50,100 mg of liver, muscle and fat tissues were homogenized

(Polytron, Brinkmann Instruments) in 2 ml ice-cold methanol:-

water (1:1, v/v) containing 0.2 mg butylated hydroxytoluene as

antioxidant. Afterwards, 15.8 nmol triheptadecanoin, 2.94 nmol

5a-cholestane and 3.5 nmol N-acetyl-sphingosine (C2 ceramide),

2.25 nmol heptadecanoyl-sphingosine (C17 ceramide) and

7.4 nmol 1, 3-dipendecanoin in 30 ml chloroform (non-polar

internal standards) and also 9.9 nmol ribitol and 11.5 nmol

norvaline in 30 ml methanol (polar internal standards) were added.

After addition of 1 ml chloroform, samples were shaken for

30 min at room temperature and then 3 ml chloroform and 2 ml

water were added. Vortexed samples were centrifuged at 4,000g

for 30 min at room temperature. Two 2 ml extracts from the

methanol/water phase or non-polar samples from the chloroform

phase were separately collected to new tubes and then evaporated

to dryness. All samples were stored at 280uC while awaiting

analysis.

For determination of non-triglyceride lipids such as FFA,

diacylglyerols, and ceramides, dried non-polar samples were

dissolved in 1.55 ml of isooctane: methanol: ethyl acetate

(20:10:1). To remove triglyceride, samples were applied to a silica

gel packed Poly-Prep column (BIO-RAD, Hercules, CA, USA) as

previously described [44,45]. Eluted free lipid fractions were

evaporated to dryness. Samples were dissolved in 150 ml

BSTFA+1% TMCS: acetonitrile (4:1) and then incubated

overnight at room temperature. GC-MS analysis of lipid species

was performed with the following parameter settings. The

temperature of the injection port, MS source and quadrupole

were set at 310uC, 230uC and 150uC, respectively. The GC

temperature program was set as follows: 3 min at 130uC, 4 min

ramp to 190uC, 3 min at 190uC, 12.3 min ramp to 264uC, 5 min

at 264uC, 5.75 min ramp to 287uC, 8 min at 287uC, 4.6 min

ramp to 310uC, 3 min at 310uC, 4.7 min ramp to 325uC, and

16.6 min at 325uC (total 70 min per run).

For fatty acids analysis in cellular lipids, dried non-polar samples

were dissolved in 250 ml of 0.5 N KOH in methanol and then

incubated at 70uC for 1h. After addition of 250 ml of 14% BF3 in

methanol, samples were further incubated at 70uC for 2h. 250 ml

saturated NaCl water was added to the resulting samples, and fatty

acid methyl esters were extracted twice in 500 ml hexane. The

temperature program for fatty acid methyl esters was set as follows:

5 min at 100uC, 5 min ramp to 175uC, 1 min at 175uC, 11 min

ramp to 208uC, 3.6 min at 208uC, 1.4 min ramp to 215uC, 4 min

at 215uC, 2 min ramp to 215uC, 7 min ramp to 255uC, 3 min

ramp to 300uC, and 2 min at 300uC (total 45 min per run).

GC-MS data analysis
GC-MS data were analyzed according to Styczynski et al. [46].

Briefly, mass spectra were processed by AMDIS software (http://

hemdata.nist.gov/mass-spc/amdis/;National Institute of Stan-

dards and Technology). The resulting ELU files were further

analyzed by the SpectConnect software (http://spectconnect.mit.

edu/) developed in our lab to identify well conserved peaks among

multiple GC-MS chromatograms. Metabolite identification of EI-
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MS peaks was performed using in-house standard libraries along

with the NIST05 MS library.

Determination of fatty source for triglyceride and
ceramide synthesis

Deuterated water (D2O; Aldrich) was provided as deuterium

source for incorporation into fatty acid (FA) during de novo

lipogenesis and ceramide synthesis. An initial priming dose of D2O

(4% body weight) by i.p. injection was followed by a maintenance

dose of 6% (vol/vol) D2O in drinking water. After 7 to 9 days,

tissue samples were collected. Deuterium enrichment in body

water was determined by GC-MS as previously described [47]

Total lipid was isolated from both liver, fat and muscle samples

after saponification. The isolated FAs were methylated and

analyzed by GC-MS as described above. Mass isotopomer

distributions were determined using the method of Lee et al.,

which corrects for the contribution of derivatizing agent and 13C

natural abundance [48]. The spectra of the palmitate (270–276

m/z), stearate (297–304 m/z) and oleate (263–276 m/z) peaks were

analyzed for their isotopomer distribution and deuterium contents,

which were used to calculate the fraction of newly synthesized FA.

Estimations of chain elongation to stearate and of desaturation to

oleate were performed as described previously[48,49]. To estimate

de novo ceramide synthesis, mass isotopomer distributions were

determined in both sphingosine- and acyl-moieties (Figure S3).

The spectra of palmitoyl-ceramide (311–317 m/z for sphingosine;

370–376 m/z for acyl-group) and docosanoyl-ceramide (311–317

m/z for sphigosine; 454–460 m/z for acyl-group) in liver and

stearoyl-ceramide (311–317 m/z for sphigosine; 398–404 m/z for

acyl-group) in muscle were analyzed.

Statistics
Data are presented as means 6 SEM unless otherwise

indicated. Data were analyzed by one-way ANOVA using Tukey’s

post hoc test to determine statistical significance for all pairwise

multiple comparison procedures and Dunnett’s test for multiple

comparisons against the control group.

Supporting Information

Table S1 Diet composition. Casein mimic AA mixture contain-

ing the following percentages: 2.5% His, 4.5% Phe, 8.8% Lys-

HCl, 1.1% Trp, 3.8% Thr, 2.4% Met, 4.5% Ile, 5.7% Val, 8.1%

Leu, 9.4% Pro, 9.4% Asn.H2O, 4.9% Tyr, 2.6% Ala, 3.3% Arg,

5.1% Ser, 9.2% Glu, 9.2% Gln, 1.6% Gly, 0.5% Cystine, 3.2%

Asp and 6.2% starch, respectively.

Found at: doi:10.1371/journal.pone.0012057.s001 (0.09 MB TIF)

Table S2 Diet composition.Casein mimic AA mixture contain-

ing the following percentages: 2.5% His, 4.5% Phe, 8.8% Lys-

HCl, 1.1% Trp, 3.8% Thr, 2.4% Met, 4.5% Ile, 5.7% Val, 8.1%

Leu, 9.4% Pro, 9.4% Asn.H2O, 4.9% Tyr, 2.6% Ala, 3.3% Arg,

5.1% Ser, 9.2% Glu, 9.2% Gln, 1.6% Gly, 0.5% Cystine, 3.2%

Asp and 6.2% starch, respectively.

Found at: doi:10.1371/journal.pone.0012057.s002 (0.07 MB TIF)

Table S3 Diet composition.

Found at: doi:10.1371/journal.pone.0012057.s003 (0.08 MB TIF)

Table S4 Plasma amino acids from c57B6 mice fed HFD for

8 weeks. Data represent mean+/2SEM (n = 6). *, p,0.05 for all

high-fat groups compared with STD group; #, p,0.05 for high

E/N groups with high fat control.

Found at: doi:10.1371/journal.pone.0012057.s004 (0.12 MB TIF)

Table S5 Primer sequences used for RT-PCR.

Found at: doi:10.1371/journal.pone.0012057.s005 (0.47 MB TIF)

Table S6 Hepatic gene expressions in C57B6 mice. a, Genes are

categorized based on KEGG metabolic pathway database. Each

letter means the following metabolic pathways: A, amino acid

metabolism; L, Lipid metabolism; C, carbohydrate metabolism

inculiding glycolysis, gluconeogensis, TCA cycle, glycogen

metabolism and pentose phosphate pathway. Data represent

mean+/2SEM (n = 9).

Found at: doi:10.1371/journal.pone.0012057.s006 (0.17 MB TIF)

Figure S1 Influences of dietary protein level on metabolic

parameters both in low and high fat diet. C57B6 mice were

housed with diet containing indicated percent of casein for

8 weeks. Data represent mean+/2SEM (n = 6). *, p,0.05 versus

20% casein group.

Found at: doi:10.1371/journal.pone.0012057.s007 (0.81 MB TIF)

Figure S2 Hepatic expression analysis of lipogenic genes in ob/

ob mice. Data represent mean+/2SEM (n = 6). *, p,0.05 for the

treatment groups as compared to control or as indicated.

Found at: doi:10.1371/journal.pone.0012057.s008 (0.44 MB TIF)

Figure S3 Stable isotopic analysis of ceramide acyl-and

sphigonsine groups. Molecular fragments and ions of acyl -and

sphingosine groups in TMS-derivatized ceramides (A) and their

mass spectra (B).

Found at: doi:10.1371/journal.pone.0012057.s009 (0.59 MB TIF)
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