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ABSTRACT: Accurate quantification of cell specific rates
and their uncertainties is of critical importance for assessing
metabolic phenotypes of cultured cells. We applied two
different methods of regression and error analysis to esti-
mate specific metabolic rates from time-course measure-
ments obtained in exponentially growing cell cultures. Using
simulated data sets to compute specific rates of growth,
glucose uptake, and lactate excretion, we found that Gauss-
ian error propagation from prime variables to the final
calculated rates was the most accurate method for estimating
parameter uncertainty. We incorporated this method into a
MATLAB-based software package called Extracellular Time-
Course Analysis (ETA), which automates the analysis work-
flow required to (i) compute cell specific metabolic rates and
their uncertainties; (ii) test the goodness-of-fit of the exper-
imental data to the regression model; and (iii) rapidly
compare the results across multiple experiments. ETA was
used to estimate the uptake or excretion rate of glucose,
lactate, and 18 different amino acids in a B-cell model of c-
Myc-driven cancer. We found that P493-6 cells with High
Myc expression increased their specific uptake of glutamine,
arginine, serine, lysine, and branched-chain amino acids by
two- to threefold in comparison to low Myc cells, but
exhibited only modest increases in glucose uptake and
lactate excretion. By making the ETA software package freely
available to the scientific community, we expect that it will
become an important tool for rigorous estimation of specific
rates required for metabolic flux analysis and other quanti-
tative metabolic studies.
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Introduction

Metabolic fluxes represent quantitative measures of material
flow within a biochemical network and are thus considered
fundamental determinants of in vivo cell physiology
(Nielsen, 2003; Sauer, 2006; Stephanopoulos, 1999;
Wiechert, 2001). Measurements of cell specific rates of
nutrient uptake and product formation (i.e., normalized to
cell density) provide the basis for intracellular flux
calculations using flux balance analysis (FBA) or metabolic
flux analysis (MFA; Quek et al., 2010). The measured
extracellular rates are critical inputs to these methods
because they constrain the solution space of feasible
intracellular fluxes. Therefore, accurate estimation of cell
specific extracellular rates, and their associated uncertain-
ties, is an essential task in the reconstruction of accurate
metabolic flux maps. In addition, cell specific rates are
intensive properties that do not depend on the size of the
system under investigation, which facilitates comparisons
between different experimental platforms.

Under balanced growth conditions, where the culture
attains an internal metabolic steady state, all cell specific
metabolic rates are considered constant and the extracellular
rates can be determined by measuring changes in medium
composition over time. This is not as trivial as it may seem
since the observed rates of change are proportional to the
mathematical product of specific rate (v) and cell density
(X), with the latter continuously increasing as the culture
grows. Therefore, the calculation procedure must account
for the combined effects of both variables on the measured
time courses, as well as random errors introduced by the
various measurements of extracellular metabolite and cell
concentrations. The preferred method involves regression
analysis to estimate the specific growth rate of the culture
(m) and specific production rate (v) of each measured
extracellular metabolite, using integrated balance equations
that describe the rates of concentration change over time.

Several prior articles have applied regression analysis to
determine metabolic rates from extracellular time courses of
substrate depletion or product accumulation (Glacken et al.,
1988; Goudar, 2012; Kim and Forbes, 2007; Zupke et al.,
1995). However, these articles did not undertake a detailed
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error analysis of their regression approach and did not
attempt to validate their approach using simulated data sets.
Accurate assessment of uncertainty is critical for MFA
because it provides the proper weighting of each measured
rate in the sum-of-squares objective function that defines
the best-fit solution. Furthermore, quantifying the uncer-
tainty in each measurement enables rigorous statistical
comparisons to be made between experiments. Recently,
Goudar et al. (2009) assessed the propagation of uncertainty
from prime variables into specific rates using both a
Gaussian error propagation approach and Monte–Carlo
analysis. Their analysis, however, was limited to perfusion
culture where cell concentrations are largely time invariant,
and they did not provide a comparison to the more
traditional approach of simply averaging the regressed
rate parameters derived from replicate experiments.
Furthermore, none of these prior studies have led to the
development of publically available software tools that auto-
mate the estimation of metabolic rates and their uncertain-
ties based on experimental time course measurements.

In this contribution, we compare two methods of error
analysis applied to the problem of estimating metabolic
rates from extracellular time-course measurements: (i)
‘‘Gaussian’’ error propagation from prime variables and
(ii) ‘‘Sampling’’ the regressed parameters from multiple
replicate experiments to estimate their standard deviation.
Uncertainties obtained from the Gaussian and Sampling
approaches were compared to the ‘‘true’’ Monte–Carlo error
estimate, which provides an asymptotically correct value but
is more expensive to compute. We found that the Gaussian
approach was the best choice for estimating uncertainty
when using a small number of experimental replicates
(n¼ 3), which is typical of cell culture experiments. To
automate the determination of specific rates and their
uncertainties, we developed a MATLAB software package
called Extracellular Time-Course Analysis (ETA). This
software facilitates the import and selection of data points
for regression, calculation of cell specific metabolic rates (or
yields) and their uncertainties using either Gaussian error
propagation or Monte–Carlo analysis, and assessment of the
goodness-of-fit of the exponential (or linear) growth model.
The model can also account for first-order degradation of
metabolites due to non-biological effects. The software
provides an intuitive graphical user interface and documen-
tation so that non-experts can readily implement these
statistical features to analyze their own experimental data
sets.

Using our newly developed ETA software package and a
B-cell model of c-Myc-driven cancer, we assessed metabolic
phenotypes under both high and low Myc expression based
solely upon extracellular metabolite and cell density
measurements. We conducted time-course growth experi-
ments and used ETA to estimate the specific uptake or
excretion rate of glucose, lactate, and 18 different amino
acids based on the exponential growth model. We found
that the faster-growing High Myc cells globally upregulated
their consumption of amino acids relative to glucose. In

particular, specific uptake rates of glutamine, arginine,
serine, lysine, and branched-chain amino acids were
substantially increased in High Myc cells relative to Low
Myc cells. Rates of glucose uptake and lactate excretion were
also increased in High Myc cells, but the relative changes
were modest in comparison to growth rate and amino acid
fluxes. This study provides an example of how ETA can be
applied to assess metabolic phenotypes of mammalian
cells as a prelude to FBA, MFA, or more comprehensive
metabolic profiling studies.

Methods

Balance Equation for Cell Growth

Balanced exponential growth in batch culture is a key
underlying assumption of these calculations. This assump-
tion is generally valid for cells that are not experiencing
nutrient or spatial growth limitations. The exponential
growth equation is

X ¼ X0e
mt (1)

where m is the specific growth rate, X is the cell density (i.e.,
cell mass or number per unit volume of culture medium), t
is time, and X0 is the initial cell density at the onset of
exponential growth. Transformation of the equation into a
form suitable for linear regression results in

lnðXÞ ¼ lnðX0Þ þ mt (2)

This equation can be used to determine the specific
growth rate from linear regression of cell density measure-
ments over time.

Balance Equations for Substrate Uptake and Product
Formation

The general balance equation that relates changes in
medium composition to extracellular metabolic fluxes
under batch growth conditions is

dC

dt
¼ �kC þ vX (3)

where C is metabolite concentration, k is the first-order
degradation rate constant, v is the specific metabolite
production rate, and X is the cell density determined from
Equation (1). The sign of the specific rate is defined to be
negative for substrates and positive for products. The decay
term is necessary to account for spontaneous first-order
degradation or accumulation of metabolites. Glutamine
is the best example of a metabolite that is subject to
degradation, since it is known to spontaneously degenerate
to ammonia and pyrrolidonecarboxylic acid under typical
culture conditions (Ozturk and Palsson, 1990). The
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degradation rate constant is assumed to be independent of
cellular metabolism and can be determined empirically by
measuring the disappearance rate of glutamine in the
absence of cells.

Substituting for X in Equation (3) using Equation (1) and
integrating with respect to t gives

Cekt|{z}
y

¼ vX0

mþ k|fflffl{zfflffl}
a

ðeðmþkÞt � 1Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
x

þ C0|{z}
b

(4)

When the decay rate constant k is zero, this equation
reduces to

C|{z}
y

¼ vX0

m|{z}
a

ðemt � 1Þ|fflfflfflfflffl{zfflfflfflfflffl}
x

þ C0|{z}
b

(5)

Equations (4) and (5) are both in a linear form y¼ axþ b
that can be used to determine the slope parameter a by
regression analysis, which can be subsequently used to
calculate the specific rate v.

Data Simulation

Noise-free time courses for cell density and glucose and
lactate concentrations were simulated using the rate
parameters in Table I. Equations (2) and (5) were used to
simulate eight measurement time points separated by 12-h
intervals. Normally distributed random errors were intro-
duced to the noise-free data using MATLAB’s normrnd
random number generator to simulate 9,999 replicate data
sets. The data sets were separated into 3,333 groups with
n¼ 3 replicates.

Least-Squares Regression and Error Analysis

Two separate methods were used for least-squares regression
and error analysis (Fig. 1). The Gaussian approach averaged
the n replicate measurements at each time point and
performed a single regression using the mean time-course
data {m1, m2, . . ., mN}. The sample variance s2i of each data
point was calculated and used to determine a pooled sample
variance s2p over the entire time course according to the
equation

s2p ¼
PN

i¼1 s
2
i

N
(6)

where N is the total number of time points included in the
regression. The standard error of the mean (SEM) was used
to represent the uncertainty of each prime variable
measurement, given by

dmi ¼
ffiffiffiffi
s2p
n

s
(7)

Errors were propagated from directly measured prime
variables, such as cell density or metabolite concentration,
to each calculated variable q¼ f (m1, m2, . . .) using the
equation (Taylor, 1997)

dq2 ¼
X

i

@f

@mi

� �2

@m2
i (8)

where the sum is over all prime variables that influence the
calculated value of q. Numerical finite differencing was
applied to estimate the partial derivatives with respect to
prime variables (Gardenier et al., 2011). Least-squares linear
regression was performed based on Equations (2) and (5)
using the propagated uncertainties dxi and dyi associated
with x- and y-axis variables, respectively, to determine the
weight wi of each data point in the sum-of-squared residuals
(SSR) objective function

SSR ¼
XN

i¼1
wiðyi � axi � bÞ2 (9)

where

wi ¼ 1

ðdy2i þ adx2i Þ
(10)

MATLAB’s lscov command was used to obtain the weighted
least-squares estimate of the best-fit line. The iterative re-
weighting method of York et al. (2004) was applied to
regressions where errors were simultaneously present in
both the x- and y-axis variables.

Alternatively, the Sampling approach did not average
the raw data prior to regression. Each replicate time course
was regresssed in an unweighted manner and rates
were calculated based on Equations (2) and (5) without

Table I. Parameters used to generate simulated data sets.

Parameter Variable Value Units

Initial log cell density ln(X0) ln(2� 105)

Log cell density measurement SD s ln(X) 0.1

Growth rate m 0.02888 h�1

Initial glucose concentration S0 20 mM

Glucose measurement SD ss 2 mM

Glucose uptake flux vs 150 nmol/106 cells/h

Initial lactate concentration P0 2 mM

Lactate measurement SD sp 2 mM

Lactate excretion flux vp 300 nmol/106 cells/h

Time step Dt 12 h

The values are representative of those found in our prior experiments
and in the literature. Equations (2) and (5) were used to simulate noise-free
time courses for cell density (X), glucose concentration (S), and lactate (P).
Normally distributed random errors with zero mean and standard deviation
(SD) of s ln(X), ss, or spwere added to the noise-free time courses of ln(X), S,
or P, respectively.
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estimating the uncertainties of prime variables. The average
and SEM of specific rates were then determined within each
group of n replicates. Because uncertainties were calculated
directly from sampling replicate rate estimates, this method
required no error propagation.

Monte–Carlo Estimation

Monte–Carlo (MC) parameter estimates provided ‘‘true’’
values to which the Gaussian and Sampling methods were
compared. MC estimates were determined by averaging the
specific rates derived from unweighted regression of all
9,999 replicate time courses. The standard deviation s of all
9,999 replicates was used to estimate the true uncertainty of
each rate parameter.

Goodness-of-Fit Assessment

We applied an F-test to assess the goodness-of-fit of our
mathematical model to each experimental data set. This
test is appropriate when the measurement variances are
estimated from sample replicates (Bevington and Robinson,
2003). The null hypothesis (H0) is that the model provides
an adequate description of the data and that any lack-of-fit

can be attributed to normally distributed random errors in
the measurements. The F-test uses the degrees of freedom
due to lack of fit (DOFLOF), the degrees of freedom due to
pure error (DOFPE), and the SSR to determine a P-value.
The DOFLOF is N�M, where N is the number of regressed
data points and M is the number of fitted parameters (e.g.,
M¼ 2 in the case of a linear model). The DOFPE is given by
N(n� 1). The P-value of the F-test is defined as

P ¼ Pr½SSR > FðDOFLOF;DOFPEÞ� (11)

or the probability that the SSR exceeds a particular value of
the F distribution with corresponding values of DOFLOF and
DOFPE.

Cell Culture

The human P493-6 B-cell line expresses an EBNA2-estrogen
receptor fusion protein and contains a tetracycline (Tet)-
repressible human MYC construct (Schuhmacher et al.,
1999). Addition of 1mg/mL Tet completely represses MYC
expression, while the co-addition of 1mM beta-estradiol
(BES, MP Biomedicals, Solon, OH) induces a low level of
endogenous MYC expression driven by the EBNA2 viral

Figure 1. Overview of study design. A noise-free time course was simulated using the parameter values listed in Table I. Normally distributed random errors were added to

the noise-free time course to generate 9,999 replicates. The replicates were grouped into 3,333 simulated experiments, each with n¼ 3. The simulated experiments were analyzed

using either the Gaussian or Sampling approach to estimate specific rates and uncertainties. Monte–Carlo estimates of the true parameter values and uncertainties were

determined by computing the average and standard deviation of specific rates regressed from all 9,999 time courses. An example is provided to illustrate how the Gaussian

approach applies a single regression based on the average measurements from each simulated experiment, whereas the Sampling approach averages the rate parameters from

n replicate regressions to estimate the final specific rate and its associated uncertainty.
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protein (Yustein et al., 2010). This allows for three distinct
levels of Myc expression: high (no addition), low
(TetþBES), and none (Tet alone; only high and low Myc
expression levels were examined in this study). Cells were
cultured in RPMI 1640 medium (2 g/L glucose and 2mM
glutamine) supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin and streptomycin (PS) at 378C and
5% CO2. All cell culture supplies were purchased from
Invitrogen (Carlsbad, CA).

Cell Density and Metabolite Concentration
Measurements

Extracellular uptake and excretion rates of P493-6 cells were
determined in triplicate growth experiments. Three separate
T-75 tissue culture flasks were seeded at a density of
150,000 cells/mL. Every 12–16 h, 300mL of cell suspension
was removed from each flask after gentle mixing using
a pipettor. Fifty microliters were used for counting on a
hemacytometer while the remainder was centrifuged to
remove cells, and the conditioned cell-free medium was
frozen at �808C. Concentrations of medium glucose and
lactate were determined using a YSI 2300 Stat Plus Glucose
and Lactate Analyzer (YSI, Yellow Springs, OH). Medium
amino acid concentrations were determined using high-
performance liquid chromatography (HPLC, Agilent 1200
series) with a gradient elution method on a reverse-phase
column (Greene et al., 2009). Briefly, samples were
derivatized immediately prior to injection with orthophtha-
laldehyde (OPA) and injected onto a ZORBAX Eclipse PLUS
C18 column (Agilent Technologies, 4.6� 150mm, 3.5mm).
Mobile phase A was composed of 10mM Na2HPO4,
10mM Na2B4O7, and 8 ppm NaN3. Mobile phase B was a
9:9:2 mixture of methanol:acetonitrile:water. The gradient
profile was as follows: 2% B for 0.5min, ramp linearly to
47% for 15.5min, ramp linearly to 100% B in 0.1min, hold
at 100% B for 3.4min, ramp linearly to 2% B in 0.1min, and
hold for 1.4min for a total time of 21min. The flow rate
was 1.5mL/min, and the column was held at 408C for the
duration of the run.

The spontaneous degradation of glutamine to ammonia
and pyrrolidonecarboxylic acid was included in the
specific rate calculations (Ozturk and Palsson, 1990). The
degradation rate was determined to be 0.0031 h�1 by
measuring glutamine disappearance in control experiments
performed in the absence of cells. Evaporation rates
determined in control T-75 flasks without cells were found
to be negligible in comparison to cell specific metabolic
rates.

t-Test for Comparison of Flux Estimates

A two tailed t-test was applied to compare specific rate
estimates between two experimental groups. The t-statistic is

calculated as

t ¼ ðv1 � v2Þffiffiffiffiffiffiffiffiffiffiffi
s2v1�v2

q ð11Þ

where

s2v1�v2
¼ s2p

1

n1
þ 1

n2

� �
ð12Þ

and

s2p ¼
d1s

2
1 þ d2s

2
2

d1 þ d2
: (13)

Here, s2p is the pooled sample variance, di is the degrees of
freedom defined as (Ni� 2), and N1 and N2 are the total
number of data points used in each regression.

MATLAB Program—Extracellular Time-Course
Analysis (ETA)

Using the MATLAB programming environment, customm-
files were coded to perform all calculations required to
implement the Gaussian, Sampling, and Monte–Carlo
methods of rate and uncertainty estimation. A user interface
was implemented to facilitate data input and analysis.
Documentation included with the software details program
usage and functionality. Briefly, cell density and metabolite
concentration data can be imported fromMicrosoft Excel or
manually entered by the user. Individual time points can be
selected interactively to achieve an acceptable fit to the
exponential growth model, based on both graphical displays
and the P-value of the F-statistic. A first-order decay rate
can be entered to correct for spontaneous metabolite
degradation. Calculated specific rates (or yields) and their
uncertainties are tabulated automatically and plotted in
an accompanying figure window. The software is freely
available at http://mfa.vueinnovations.com/

In addition to proliferating cell cultures, the exponential
growthmodel can be readily applied to cultures in stationary
or decline phase, in which case the specific growth rate
will be estimated as near zero or negative, respectively.
Furthermore, specifying the dead cell density (Xd) as an
accumulating product formed from first-order death of
viable cells can then be used to estimate the death rate
constant (kd) of the culture if measurements of cell viability
are available (i.e., replace C with Xd and v with kd in
Equation 3). ETA is also capable of applying a linear growth
model, which is known to occur in some instances of
diffusion-limited or contact-inhibited growth of cultures
(Freshney, 2000; Rizzi et al., 1989). Although advanced
growth models involving logistic or Gompertz equations
have been previously used to describe more complicated
growth curves, these models are explicitly intended to
describe unbalanced growth conditions where growth rate
and metabolism are changing over time. Therefore, we have
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chosen to include only two growth models in ETA (i.e.,
exponential and linear), because they are applicable to the
vast majority of typical cell cultures undergoing balanced
growth. Since balanced growth is also a key underlying
assumption of FBA and MFA, we do not expect that this
limitation will severely restrict the applicability of the
program for the purposes it is intended.

Results

Comparison of Simulated Data Sets

We applied the Gaussian, Sampling, and Monte–Carlo
approaches to determine specific growth and metabolite
production rates by regressing 9,999 simulated time courses
generated using the parameter values in Table I. We
hypothesized that Gaussian error propagation from prime
variables would provide more precise rate and uncertainty
estimates in comparison to the Sampling approach, which
involves simply averaging the regressed rate parameters
derived from replicate experiments, when the number of
replicates is small. To test this hypothesis, we compared
3,333 rate estimates derived from the Gaussian and
Sampling approaches (each with n¼ 3) to the ‘‘true’’
Monte–Carlo estimates determined by averaging rate
estimates from all 9,999 simulated data sets. The calculated
growth, glucose uptake, and lactate excretion rates returned
by the Gaussian and Sampling methods exhibited normal
distributions over the 3,333 simulated experiments (data not
shown). The mean of each distribution was nearly identical
to the Monte–Carlo estimate (Table II), and approximately
68% of the calculated rates fell within one standard error of
the MC estimate in each case. As a result, we concluded that
averaging experimental replicates either before or after
regression analysis provides an equally valid approach to
estimate the value of each specific rate parameter.

In contrast to the rate values, the two methods did not
produce equally accurate estimates of parameter uncertain-
ties. When comparing the distribution of uncertainties
returned by each method, we found that Gaussian error
propagation resulted in an approximately normal distribu-
tion that was centered on the true value while the
uncertainties determined by the Sampling approach had a

non-normal distribution that was not centered around the
true value (Fig. 2). In order to assess the accuracy of the two
methods quantitatively, we calculated root-mean-square
(RMS) errors based on the residuals between estimated
uncertainties returned by the Gaussian or Sampling
approach and the true values determined by Monte–
Carlo analysis. The RMS errors for Gaussian error
propagation were nearly threefold lower than the
Sampling approach, indicating less variability and greater
accuracy (Table III). As a result, we concluded that the
Gaussian approach provides more accurate and precise
uncertainty estimates when the number of experimental
replicates is small (e.g., n¼ 3) and is therefore the preferred
method.

P493-6 Rate Estimation With ETA

Using our custom ETA software, we estimated specific
metabolic rates for High and Low Myc P493-6 cell cultures.
We estimated specific growth rate as well as uptake and
excretion rates of glucose, lactate, and 18 of 20 amino acids
(Table IV). ETA enabled us to select the most appropriate
points for analysis based on the goodness-of-fit F-test and
visual inspection (Fig. 3). For glutamine, we included an
empirically determined degradation rate constant of
0.0031 h�1, which significantly improved the P-value of
the model fit from 0.0044 to 0.9329. As shown in Figure 4,
the data fall along a straight line when corrected for
degradation effects using Equation (4), but have a curved
profile when uncorrected.

Growth of low Myc cells was 40% slower than high Myc
cells, while glucose uptake was reduced by only 21%. Both
high and low Myc cells exhibited a highly glycolytic
phenotype, with the majority of incoming carbon excreted
as lactate. This was most clearly indicated by the high
lactate-to-glucose (L/G) ratios of 1.9� 0.2 and 2.1� 0.3
for high and low Myc cells, respectively. Besides glucose,
glutamine is the other major carbon substrate for
mammalian cell cultures (Vander Heiden et al., 2009).
Glutamine uptake was elevated nearly twofold in high Myc
cells relative to low Myc cells, supplying 9% of total carbon
to high Myc cells and 7% to low Myc cells. The uptake rates
of most other amino acids were similarly elevated in high
Myc cells (Table IV).

Discussion

Accurate quantification of cell specific metabolic rates and
their uncertainties is of critical importance for assessing
metabolic phenotypes of cultured cells. Using rigorous
parameter regression approaches, we have shown that
Gaussian error propagation is the most accurate and precise
method for estimating the uncertainty of specific rates when
the number of experimental replicates is small. This analysis
uses finite differencing to compute the derivatives in

Table II. Rate estimations based on simulated data sets.

Growth (h�1)

Glucose

nmol/106 cells/h

Lactate

nmol/106 cells/h

Gaussian 0.028878� 0.000013 150.1� 0.3 299.9� 0.3

Sampling 0.028878� 0.000013 150.1� 0.3 300.0� 0.3

Monte–Carlo 0.028878� 0.000013 150.1� 0.3 300.0� 0.3

Values for both Gaussian and Sampling approaches are shown as
M� SEM, where M is the population mean over all 3,333 simulated
experiments (each with n¼ 3) and SEM is the standard error of the
population mean (The Monte–Carlo estimates represent the means over
all 9,999 replicates).

Murphy and Young: ETA: Extracellular Time-Course Analysis 1753

Biotechnology and Bioengineering



Equation (8), which allows the uncertainties in all prime
variables to be propagated into calculated variables. The
Sampling approach, however, attempts to estimate uncer-
tainties based solely on the standard deviation of estimated
rates determined from replicate experiments. When n is
sufficiently large, this is an acceptable method that
asymptotically approaches the accuracy of the Monte–
Carlo result. However, when n is small, uncertainty
estimates become less reliable than those determined by
Gaussian error propagation. A further practical consider-
ation is that some experiments do not allow for repeated
sampling of the same cell culture, which means that each
time point must be derived from a separate culture plate or

flask. Because there is no logical way to group these data
points into individual time courses without first averaging
the data from separate experimental replicates, the Sampling
approach is not applicable to this scenario and Gaussian
error propagation is the only approach that can be used to
obtain meaningful uncertainty estimates.

We applied the Gaussian approach coded within our
custom ETA software to analyze time-course experiments
conducted on high Myc and low Myc P493-6 B-cells.
These cells contain a tetracycline-repressible Myc construct,
which enables different levels of Myc expression to be
studied on an isogenic background (Pajic et al., 2001, 2000).
HighMyc cells are tumorigenic and resemble human Burkitt
lymphoma cells, whereas lowMyc cells are non-tumorigenic
(Yustein et al., 2010). Therefore, comparison of metabolic
phenotypes between high and low Myc cells is expected to
reveal differences between normal proliferating cells and
cancerous cells.

Measurements of cell density and extracellular nutrient
concentrations were obtained throughout exponential phase
and biological replicates were averaged. This was followed by
regression analysis to estimate specific rates of growth,
substrate consumption, and product excretion. Based on
these specific rates, we observed that high Myc cells
significantly increased their growth rate and the magnitude
of most nutrient uptake and excretion rates in comparison

Figure 2. Distribution of estimated uncertainties determined from simulated data sets. Histograms describing the distribution of uncertainties for specific growth, glucose

uptake, and lactate excretion rates are shown for both (A) Gaussian error propagation and (B). Sampling rate estimates from replicate experiments. The solid black lines represent

the Monte–Carlo estimate of the true uncertainty of the estimated rates, which is given by si=
ffiffiffiffi
n

p
.

Table III. Root-mean-square (RMS) errors of estimated uncertainties.

Growth

(h�1)

Glucose

(nmol/106 cells/h)

Lactate

(nmol/106 cells/h)

Gaussian 1.3� 10�4 3.1 2.9

Sampling 3.5� 10�4 8.6 9.0

RMS errors were calculated for both the Gaussian and Sampling
approaches by first computing the residuals between estimated uncertain-
ties and the true values determined by Monte–Carlo analysis. The residuals
for all simulated experiments were then combined by taking the square root
of the sum of squared residuals divided by the total number of simulated
experiments (3,333).
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to low Myc cells. These results are consistent with previous
reports of the general stimulating effect of Myc on cell
growth and metabolism (Fan et al., 2010; Morrish et al.,
2008, 2009). Studies in Rat1a fibroblasts and P493-6 cells
have shown that Myc enhances flux through the glycolytic
pathway by direct transactivation of several glycolytic genes
(Kim et al., 2004; Osthus et al., 2000; Shim et al., 1997).
However, ectopic Myc expression only modestly increased
glucose consumption and lactate production in our system,
and the relative changes in these rates were sub-proportional
to the change in specific growth rate we observed. In
contrast, most amino acid uptake fluxes were increased two-
to threefold in highMyc cells relative to lowMyc cells, which
exceeded the 1.6-fold change in specific growth rate.
Therefore, ectopic Myc expression impacted amino acid
fluxes more strongly than glycolytic fluxes in P493-6 cells.

It has been previously shown that Myc exerts direct
control over glutamine metabolism and that Myc-over-
expressing cells are acutely sensitive to glutamine withdraw-
al or inhibition of anaplerotic glutamine flux entering the
TCA cycle (Fan et al., 2010; Wise et al., 2008; Yuneva et al.,
2007). Our data support these findings, as we observed a
significant increase in glutamine uptake in high Myc cells
as compared to low Myc cells. However, our results also
indicate that high Myc cells simultaneously increased most
other amino acid fluxes in addition to glutamine. Nearly half
of the incoming amino acids were consumed in excess of
their biosynthetic requirements, which indicates that they
were partially catabolized to meet the energetic or redox

demands of P493-6 cells. Aside from one study that
identified serine hydroxymethyltransferase (SHMT2) as a
direct Myc target gene (Nikiforov et al., 2002), little is
known about how Myc stimulates metabolism of other
amino acids besides glutamine. Based on these results,
further work to unravel the mechanisms by which Myc
influences global patterns of amino acid utilization in tumor
cells could have significant therapeutic or diagnostic
implications.

One distinct advantage of using Gaussian error propaga-
tion for specific rate determination is the ability to
rigorously assess the goodness-of-fit of the exponential
growth model to the experimental data. In addition to
accurate uncertainty estimation, the ETA software enables
the user to interactively include or exclude individual data
points based on the P-values of the goodness-of-fit F-test
and graphical displays. This would not be possible without
measurement of full time-course data, which enables
confirmation of the underlying assumptions implying
balanced growth and constant metabolic rates. Several
recent articles have appeared in the biotechnology literature
that rely on rate estimates computed from only two
measurement time points (Jain et al., 2012; Mullen et al.,
2012). While this may be suitable for initial screening
experiments, it does not lend itself to the type of rigorous
error analysis and statistical treatment that is necessary for
quantitative flux studies. Therefore, collection of multiple
sample time points under balanced growth conditions
followed by regression analysis and Gaussian error

Table IV. Metabolic rates for high and low Myc P493-6 cell cultures.

Metabolite

High Myc Low Myc

Sig. diff. (P< 0.05)Specific rate (nmol/106 cells/h) Fit P-value Specific rate (nmol/106 cells/h) Fit P-value

Biomass (h�1) 0.0290� 0.0010 0.1477 0.0176� 0.0010 0.7419 U

Uptake fluxes

Glucose 73� 7 0.9177 58� 7 0.5981 0
Arginine 4.6� 0.6 0.4751 1.9� 0.3 0.0387 U

Asparagine 0.9� 0.4 0.2923 0.9� 0.3 0.1637 0
Cystine 0.73� 0.13 0.7364 0.88� 0.09 0.3990 0
Glutamine 11.5� 0.7 0.9329 5.9� 0.40 0.2089 U

Histidine 0.78� 0.12 0.903 0.17� 0.05 0.5644 U

Isoleucine 2.5� 0.2 0.9694 1.3� 0.30 0.7093 U

Leucine 3.3� 0.3 0.8483 1.02� 0.14 0.2334 U

Lysine 2.1� 0.2 0.9233 0.26� 0.08 0.3271 U

Methionine 0.7� 0.1 0.9807 0.11� 0.04 0.6590 U

Phenylalanine 0.1� 0.3 0.9951 0.3� 0.11 0.9754 U

Serine 4.1� 0.2 0.8515 1.34� 0.10 0.3054 0
Threonine 0.27� 0.06 0.8198 0.57� 0.09 0.0520 U

Tyrosine 0.57� 0.09 0.9797 0.14� 0.05 0.5471 U

Valine 1.41� 0.12 0.9193 0.54� 0.07 0.4526 U

Excretion fluxes

Lactate 138� 9 0.2805 119� 7 0.9953 0
Alanine 1.63� 0.14 0.8557 0.44� 0.09 0.1483 U

Aspartate 0.36� 0.14 0.8772 �0.38� 0.05 0.0072 U

Glutamate 2.7� 0.4 0.6521 2.9� 0.2 0.4787 0
Glycine 0.8� 0.2 0.3028 0.01� 0.08 0.3727 U

Rates have units of nmol/106 cells/h except for cell growth, which has units of h�1. P-values based on the goodness-of-fit F-test are listed for each rate
parameter. Significance is indicated for the comparison between low and high Myc conditions based on a two-tailed Student’s t-test with P< 0.05.
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propagation are prerequisite for precise determination of
metabolic fluxes.

We determined P-values for the P493-6 data set which
describe the confidence level in each fitted parameter based
on an F-test. The goodness-of-fit P-value reflects the

probability that any disagreements between the model and
the experimental measurements are due to random errors
rather than systematic errors. Based on this test, we should
conclude that the fit is inadequate if the calculated P-value is
unreasonably low. A low P-value can result from a few

Figure 3. Features of the ETA software package. A: Users are able to (1) create new experimental time courses and view the calculated rate (or yield) estimates and

associated uncertainties in both (2) graphical, and (3) tabular formats for either exponential or linear growth models. B: When a single measurement is selected, the program allows

the user to (4) graphically assess the goodness-of-fit, (5) enter and select raw data for regression, and (6) view the calculated rates along with the P-value and mean-square error of

the fit. Adjustable error tolerances and first-order degradation parameters can also be supplied by the user (7).
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possible causes. First, it can indicate that the model is
inadequate (e.g., balanced exponential growth assumption
does not hold) or there are gross measurement errors in the
data. Second, it can indicate that the true measurement
errors are larger than what was specified in the regression
analysis. If both of these can be excluded, the final possibility
is that the measurement errors are not normally distributed.
This can lead to P-values that seem small (e.g., 0.001) but
may still be justifiable in practical cases where the errors
have some non-Gaussian component. Fits that are grossly
incorrect will often give very small P-values (e.g., 10�18) and
should be summarily rejected (Press et al., 1992). In all cases,
the P-values of the P493-6 rate estimates were greater than
0.001, indicating that the exponential model was acceptable.

One limitation of our approach is that it assumes
balanced exponential growth with constant specific rates of
nutrient uptake or product excretion. If the culture exhibits
multiple distinct growth phases (e.g., exponential, station-
ary, decline, etc.) or metabolic shifts during the experiment,
the full time course can be divided into separate subintervals
in which growth and metabolism are approximately
constant. This will allow for each subinterval to be separately
analyzed and subsequently compared. Obviously, this is not
possible if growth and metabolism are changing continu-
ously over time or if distinct transition points cannot be
readily identified within the overall time course. Both
Leighty and Antoniewicz (2011) and Niklas et al. (2011)
have developed sophisticated approaches for addressing
such fully time-dependent scenarios by combining extra-
cellular measurements with stoichiometric balance con-
straints that enable dynamic MFA calculations. Leighty and
Antoniewicz used piece-wise linear functions to approxi-
mate the time-dependence of extracellular concentration
measurements, whereas Niklas et al. applied polynomial
splines to smooth and differentiate the extracellular

measurements. Although these methods provide powerful
alternative approaches that can be applied more generally
to either metabolically transient or steady-state conditions,
the underlying growth equations do not reduce to the
canonical exponential growth model under steady-state
growth conditions and therefore do not lend themselves
readily to the analysis of standard growth experiments.
Furthermore, the increased parameterization of these
models can lead to elevated flux uncertainties in situations
where the additional complexity is not warranted. This
is especially evident during the initial period of batch or
fed-batch growth when extracellular concentrations change
slowly and therefore signal-to-noise ratios are small, as
noted by Niklas et al. (2011).

In summary, the application of regression analysis and
Gaussian error propagation provides a rigorous approach to
compare the metabolic phenotypes of different cell lines and
growth conditions. While many types of experimental assays
have been developed to facilitate the rapid collection of
metabolic measurements, software tools that automate the
analysis and statistical assessment of these data have been
lacking. Therefore, ETA has been developed to streamline
the analysis workflow required to (i) compute cell specific
metabolic rates and their uncertainties based on an
exponential or linear growth assumption; (ii) test the
goodness-of-fit of the experimental data to the regression
model; and (iii) rapidly compare the results across multiple
experiments. Although our approach does not involve the
complexity of some recently introduced dynamic MFA
algorithms, we expect that it will be applicable to most
typical batch or intermittent fed-batch experiments where
metabolic steady state is achieved for extended intervals
punctuated by infrequent metabolic transitions caused by
the onset of nutrient depletion, oxygen limitation, or
accumulation of some inhibitory factor (Deshpande et al.,

Figure 4. Effects of spontaneous degradation on glutamine rate estimation. A: When first-order degradation of glutamine is not accounted for, the data do not fit the

exponential growth model. B: When the correct degradation constant is included, Equation (4) provides an acceptable fit to the raw concentration measurements. Flux is measured

in units of nmol/million cells/h.
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2009). The rates calculated by ETA can then serve as inputs
for a wide range of more advanced stoichiometric or kinetic
modeling approaches, including FBA or MFA.

The authors thank Dr. Chi V. Dang for providing the P493-6 cell line

used in this study.
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