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We assessed several methods of 13C metabolic flux analysis (MFA) and found that isotopically

nonstationary MFA achieved maximum flux resolution in cultured P493-6 B-cells, which have been

engineered to provide tunable expression of the Myc oncoprotein. Comparison of metabolic flux maps

obtained under oncogenic (High) and endogenous (Low) Myc expression levels revealed network-wide

reprogramming in response to ectopic Myc expression. High Myc cells relied more heavily on

mitochondrial oxidative metabolism than Low Myc cells and globally upregulated their consumption

of amino acids relative to glucose. TCA cycle and amphibolic mitochondrial pathways exhibited 2- to

4-fold flux increases in High Myc cells, in contrast to modest increases in glucose uptake and lactate

excretion. Because our MFA approach relied exclusively upon isotopic measurements of protein-bound

amino acids and RNA-bound ribose, it is readily applicable to more complex tumor models that are not

amenable to direct extraction and isotopic analysis of free intracellular metabolites.

& 2012 Elsevier Inc. All rights reserved.
1. Introduction

The reprogramming of energy metabolism is emerging as an
important molecular hallmark of cancer cells (Hanahan and
Weinberg, 2011). In particular, understanding the so-called
Warburg effect, described as the avid conversion of glucose to
lactate by tumor cells under aerobic conditions, has become a
high priority in cancer research (Hsu and Sabatini, 2008;
Koppenol et al., 2011; Vander Heiden et al., 2009). Recent
discoveries linking specific metabolic alterations to cancer devel-
opment have strengthened the idea that deregulated metabolism
is more than a side effect of malignant transformation, but may in
fact be a functional driver of tumor growth and progression in
some cancers (Dang et al., 2009; DeBerardinis et al., 2008; Vander
Heiden et al., 2010). Furthermore, prior studies have
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demonstrated that the Warburg effect can be reversed by either
inhibiting lactate production (Fantin et al., 2006; Le et al., 2010)
or altering the expression of specific glycolytic enzymes
(Christofk et al., 2008), which correlates with a reduction in the
ability of isogenic cancer cells to form tumors in nude mouse
xenografts. Because of these and other discoveries, deregulated
metabolic pathways have become attractive targets for cancer
therapeutics (Evans et al., 2005; Kroemer and Pouyssegur, 2008;
Michelakis et al., 2008).

To guide the search for new therapeutic targets and to better
understand the mechanisms of metabolic reprogramming in
tumor cells, integrative approaches are needed to fully character-
ize the metabolic phenotypes of cancer cells and to determine
how they are influenced by specific molecular alterations. In
particular, the ability to map intracellular carbon flows using
13C metabolic flux analysis (MFA) provides an attractive platform
to elucidate the functional behavior of entire biochemical net-
works, rather than individual reactions or nodes in isolation
(Sauer, 2006). By feeding cells a 13C-labeled substrate and subse-
quently measuring the patterns of isotope incorporation in down-
stream metabolic products, extensive information about the
intracellular distribution of carbon flux can be obtained. This
enables system-wide quantification of reversible, parallel, and
cyclic metabolic pathways that would be otherwise unidentifiable
based solely upon measurements of extracellular nutrient uptake
and product excretion (Zamboni et al., 2009).

While 13C MFA provides a rich source of phenotypic information,
the application of this technique to mammalian systems presents
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unique challenges. In particular, the presence of subcellular com-
partmentation, complex media formulations, and slow labeling
dynamics can lead to significant difficulties in experimental design
and data interpretation (Zamboni, 2011). As a result, most mamma-
lian MFA studies have relied on direct extraction and isotopomer
analysis of free intracellular metabolites, rather than more slowly
labeled – but highly abundant and stable – macromolecular species
(Zamboni et al., 2009). Isotopically non-stationary MFA (INST-MFA)
provides one approach to circumvent these limitations through
computational analysis of metabolite labeling patterns obtained
during the transient labeling period prior to isotopic steady state
(Wiechert and Noh, 2005). This approach offers several advantages
over steady-state MFA, including shorter experimental times and the
ability to determine fluxes with increased precision (Nöh and
Wiechert, 2011; Young and Walther, 2008).

In this contribution, we investigated the metabolic alterations
caused by differential expression of the MYC oncogene in a human
B-cell line. MYC encodes the transcription factor c-Myc (herein
termed Myc), which is a global regulator of cell growth, metabo-
lism, and apoptosis (Dang, 1999). Myc exhibits deregulated
expression in approximately 30% of human cancers (Dang et al.,
2008) and is one of four transcription factors that collectively can
reprogram differentiated adult cells back to a pluripotent stem
cell state (Takahashi and Yamanaka, 2006). Although a few prior
studies have applied isotopomer analysis to investigate the
metabolic fates of 13C-labeled glucose and glutamine tracers in
Myc-expressing cells, these approaches were not capable of
integrating numerous isotopic measurements into a comprehen-
sive flux map that encompasses all major pathways of central
carbon metabolism (Le et al., 2012; Morrish et al., 2008; Wise
et al., 2008). Furthermore, these studies were focused on dis-
covering metabolic differences between Myc-expressing and non-
expressing cells, rather than between cells with oncogenic (High)
and endogenous (Low) Myc expression levels. Our study, on the
other hand, applied rigorous 13C flux analysis to quantify meta-
bolic phenotypes of P493-6 B-cells, which have been engineered
to provide three distinct levels of Myc expression (No, Low, or
High) depending on culture conditions.

We compared several steady-state and isotopically nonsta-
tionary MFA approaches to identify the best approach for analysis
of P493-6 cells based on isotopomer measurements of protein-
bound amino acids and ribose-bound RNA. We concluded that 13C
INST-MFA was the most effective strategy for flux determination
in these cells, and that ribose isotopomer measurements were
important for maximizing flux identifiability. We then applied
this approach to quantify fluxes in both High and Low Myc P493-
6 cells (Fig. 1) and found significant reprogramming of central
metabolism in response to ectopic Myc expression. High Myc cells
relied more heavily on mitochondrial metabolism than Low Myc
cells and globally upregulated their consumption of amino acids
relative to glucose. The oxidative pentose phosphate (PP) path-
way exhibited minimal activity under both High and Low Myc
conditions, with negligible flux through the non-oxidative PP
branch. Based on these results, we expect that 13C INST-MFA will
become a powerful tool for analysis of tumor cell physiology and
for identification of critical metabolic nodes that can be targeted
to inhibit cancer growth.
2. Materials and methods

2.1. Cell culture

The human P493-6 B-cell line expresses an EBNA2-estrogen
receptor fusion protein and contains a tetracycline (Tet)-repressible
human MYC construct (Schuhmacher et al., 1999). Addition of 1 mg/
mL Tet completely represses MYC expression, while the co-addition
of 1 mM beta-estradiol (BES, MP Biomedicals, Solon, OH) induces a
low level of endogenous MYC expression driven by the EBNA2 viral
protein (Yustein et al., 2010). This allows for three distinct levels of
Myc expression: High (no addition), Low (TetþBES), and None
(Tet alone). Only the High and Low expression conditions were
examined in this study. Cells were cultured in RPMI 1640 medium
(2 g/L glucose and 2 mM glutamine) supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin and streptomycin (PS) at 37 1C
and 5% CO2. All cell culture supplies were purchased from Invitrogen
(Carlsbad, CA). For tracer experiments, glucose-free medium was
supplemented with the following mixture of 13C-labeled substrates:
28% [U–13C6]glucose, 20% [1-13C]glucose, and 52% [1,2-13C2]glucose.
All tracers were purchased from Cambridge Isotope Laboratories
(Andover, MA).

2.2. Oxygen uptake rates

High-resolution O2 consumption measurements were con-
ducted at 37 1C in RPMI 1640 medium using the OROBOROS
O2K Oxygraph (Oroboros Instruments, Innsbruck, Austria). Cells
were adjusted to a density of one million cells/mL and allowed to
equilibrate in the instrument for a minimum of ten minutes. Cells
were stirred at 750 RPM in atmospheric conditions without CO2

control. To confirm that oxygen uptake was dependent on cellular
respiration, we treated cells with the Complex I inhibitor rote-
none at a concentration of 100 nM (Kim et al., 2006). Higher
rotenone concentrations produced erratic measurements and did
not result in further reductions in the O2 uptake rate.

2.3. Specific rate determination

Extracellular uptake and excretion rates were determined in
triplicate growth experiments. Three separate T-75 tissue culture
flasks were seeded at a density of 150,000 cells/mL. Every
12–16 h, 300 mL of cell suspension was removed from each flask
after gentle mixing using a pipettor. 50 mL were used for counting
on a hemacytometer while the remainder was centrifuged to
remove cells, and the conditioned cell-free medium was frozen at
�80 1C. Concentrations of medium glucose and lactate were
determined using a YSI 2300 Stat Plus Glucose and Lactate
Analyzer (YSI, Yellow Springs, OH). Medium amino acid concen-
trations were determined using high-performance liquid chroma-
tography (HPLC, Agilent 1200 series) with a gradient elution
method on a reverse-phase column (Greene et al., 2009). Briefly,
samples were derivatized immediately prior to injection with
orthophthaldildehyde (OPA) and injected onto a ZORBAX Eclipse
PLUS C18 column (Agilent Technologies, 4.6�150 mm, 3.5 mm).
Mobile phase A was composed of 10 mM Na2HPO4, 10 mM
Na2B4O7, and 8 ppm NaN3. Mobile phase B was a 9:9:2 mixture
of methanol:acetonitrile:water. The gradient profile was as fol-
lows: 2% B for 0.5 min, ramp linearly to 47% for 15.5 min, ramp
linearly to 100% B in 0.1 min, hold at 100% B for 3.4 min, ramp
linearly to 2% B in 0.1 min, and hold for 1.4 min for a total time of
21 min. The flow rate was 1.5 mL/min, and the column was held
at 40 1C for the duration of the run.

The specific growth rate (m) and specific production rate (qi)
for each measured metabolite were defined as follows:

dX

dt
¼ mX, ð1Þ

dCi

dt
¼�kiCiþqiX, ð2Þ

where X is the cell density, ki is the first-order degradation rate of
the ith metabolite, and Ci is the concentration of the ith



Fig. 1. Overview of MFA study design. A mixture of 13C-labeled glucose tracers

were fed to P493-6 growing under High or Low Myc conditions. Extracellular

medium concentrations and intracellular metabolite labeling were measured at

various time points throughout exponential phase. A computational model was

applied to map fluxes by minimizing the lack of fit between simulated and

measured labeling data and extracellular flux measurements.
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metabolite. The method of Glacken et al. (1988) was applied to
estimate specific production rates by regression analysis of
extracellular time-course measurements. The spontaneous degra-
dation of glutamine to ammonia and pyrrolidonecarboxylic acid
was included in the calculations (Ozturk and Palsson, 1990). The
degradation rate was determined to be 0.0031 h�1 by measuring
glutamine disappearance in control experiments performed in the
absence of cells. Evaporation rates determined in control T-75
flasks without cells were found to be negligible in comparison to
cell specific metabolic rates.

2.4. Steady-state labeling experiment

In order to achieve steady-state labeling, it was necessary to
culture cells continuously in the presence of tracers throughout
multiple platings. Cells were seeded at an initial density of 150,000
cells/mL in a T-25 flask. Every two days, cells were counted and
replated at the same initial density in fresh tracer-containing
medium. After 4 platings (approximately 8 cell doublings), the cells
were harvested by centrifugation at 1500 RPM, washed with PBS,
and extracted to isolate total cellular protein and RNA. Each
experiment was performed in triplicate.

2.5. Isotopically non-stationary labeling experiment

INST-MFA requires the measurement of isotopic enrichment at
multiple time points during the transient labeling period. For
High Myc cells, samples were taken at 6, 12, 24, 36, 48, and 72 h.
For Low Myc cells, which exhibited a slower growth rate, samples
were taken at 12, 24, 36, 48, 72, and 96 h. For each time point,
three separate T-75 flasks were seeded at the appropriate density
to achieve a final cell number of approximately ten million cells
per flask at the time of sampling. Prior to seeding, the growth
medium was removed by centrifugation and the cells were
resuspended in glucose labeled medium. At the sample times
indicated previously, cells were harvested by centrifugation at
1500 RPM, washed with phosphate buffered saline (PBS), and
extracted to isolate total cellular protein and RNA.

2.6. Extraction, hydrolysis and derivatization of total cellular protein

and RNA

Extraction of protein and RNA was achieved using the TRIzol
method, with the exception that proteins were precipitated using
acetone instead of isopropanol (Simms et al., 1996). Protein
samples were hydrolyzed to their constituent amino acids by
incubating in 6 N HCl for 20 h at 110 1C in a vacuum hydrolysis
tube (Pierce). Similarly, RNA samples were hydrolyzed to ribose
by incubating in 2 N HCl at 100 1C for 2 h under vacuum. Protein
hydrolysate samples were evaporated to dryness at 60 1C under
air flow. These dried samples were redissolved in 200 mL of
ddH2O, filtered through a 0.2 mm filter, and re-dried prior to
derivatization. RNA hydrolysate samples were evaporated to
dryness at 60 1C under air flow prior to derivatization.

To enable GC–MS analysis, amino acids were converted to
their tert-butyl dimethylsilyl (TBDMS) derivatives by dissolving in
50 mL pyridine and 70 mL MTBSTFAþ1% TBDMCS (Pierce), fol-
lowed by incubation at 60 1C for 30 min. Ribose was converted to
its aldonitrile pentapropionate derivative to enable GC–MS ana-
lysis (Antoniewicz et al., 2011; Lee et al., 1998). Briefly, dried
samples were dissolved in 50 mL of 2 wt% hydroxylamine hydro-
chloride in pyridine (Sigma) and incubated for 60 min at 90 1C.
Next, 100 mL of propionic anhydride (Sigma) was added, and the
samples were incubated at 60 1C for an additional 30 min.
Samples were then centrifuged and evaporated at 60 1C. The
dried samples were dissolved in 100 mL of ethyl acetate prior to
GC–MS analysis.

2.7. Medium glucose derivatization

Medium glucose labeling was assessed by GC–MS analysis.
100 mL of medium was washed with three volumes of cold
acetone and centrifuged to remove protein. Samples were then
evaporated to dryness at 60 1C under air flow. Glucose was then
converted to its aldonitrile pentapropionate derivative using the
same procedure described in the previous section for ribose
analysis.

2.8. Gas chromatography mass spectrometry (GC–MS) analysis

Derivatized sugar and amino acid samples were analyzed by
GC–MS using a HP5-MS capillary column (30 m�0.25 mm
i.d.�0.25 mm; Agilent J&W Scientific) installed in an Agilent
7890A gas chromatograph (GC). The injection volume was 1 mL,
and all samples were run in split mode with an inlet temperature
of 270 1C and a split ratio of 10:1. Helium flow was controlled
electronically at 0.73 mL/min for amino acid analysis and
1.65 mL/min for ribose and glucose analysis. The GC was inter-
faced to an Agilent 5975C mass spectrometer (MS) operated in
electron impact mode with temperatures of 230 1C for the ion
source and 150 1C for the quadrupole. The GC temperature
program for amino acid analysis was: 150 1C for 2 min, ramp at
5 1C/min to 280 1C, hold for 2 min. Mass spectra were obtained in
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scan mode over the range 100–500 m/z. The GC temperature
program for glucose and ribose analysis was: 80 1C for 1 min,
ramp at 20 1C/min to 280 1C, hold for 4 min. Mass spectra were
obtained in scan mode over the range 100–700 m/z. Raw ion
chromatograms were integrated using a custom MATLAB M-file
that applies consistent integration bounds and baseline correction
to each ion (Antoniewicz et al., 2007a).

2.9. Isotopomer network model

A detailed isotopomer model for mammalian B-cell metabo-
lism was constructed. The metabolic network contains reactions
for glycolysis, pentose phosphate pathway, TCA cycle, amphibolic
pathways, amino acid catabolism, and biomass synthesis (Sup-
plementary Table 2). The network comprises 54 reactions with
carbon atom transitions specified for all reactions. The network
includes 8 extracellular substrates (glucose, arginine, asparagine,
cysteine, glutamine, isoleucine, leucine, and serine), 6 metabolic
products (biomass, lactate, alanine, glutamate, glycine, and lipids)
and 35 balanced intracellular metabolites. Constraints from
cofactor metabolites such as ATP and NAD(P)H were excluded
because these balances have been shown to produce unreliable
results in mammalian systems (Bonarius et al., 1998). Refer to
supplementary materials for a detailed description of the model
formulation and assumptions.

2.10. Flux determination and statistical analysis

The elementary metabolite unit (EMU) framework was applied
to efficiently simulate the labeling state of measurable metabo-
lites represented in the isotopomer model (Antoniewicz et al.,
2007b; Young et al., 2008). Both steady-state MFA and INST-MFA
approaches involve solving an inverse problem whereby meta-
bolic fluxes are determined by least-squares regression of mea-
sured extracellular fluxes and metabolite labeling patterns. The
flux parameters of the isotopomer model were iteratively
adjusted using a Levenberg–Marquardt algorithm until optimal
agreement with experimental data was obtained. Flux estimation
was repeated a minimum of 50 times from random initial values
to ensure a global minimum was achieved. All results were
subjected to a chi-square statistical test to assess goodness-of-
fit, and accurate 95% confidence intervals were computed for all
estimated parameters by evaluating the sensitivity of the sum-of-
squared residuals (SSRES) to parameter variations (Antoniewicz
et al., 2006).

2.11. Isotopomer spectral analysis (ISA)

Isotopomer spectral analysis (ISA) is an alternative method to
determine fluxes from nonstationary isotopomer measurements.
It assumes that any deviations from steady state are due to the
presence of unlabeled material that has not yet washed out of the
system, and adjustable parameters are introduced that represent
the fraction of unlabeled material that persists in both precursor
and product pools; these parameters are denoted as D and G,
respectively. The ISA framework was originally developed by
Kelleher and Masterson (1992) and has been applied by
Antoniewicz et al. (2007c) to determine fluxes in a nonstationary
model of Escherichia coli metabolism.

As an alternative to INST-MFA, we developed an ISA-based
nonstationary model by including two G dilution parameters, G1

and G2, into our steady-state isotopomer model. G1 represents the
fraction of labeled protein in biomass and G2 represents the
fraction of labeled RNA. Hence, (1�G1) and (1�G2) represent
the amount of unlabeled protein and RNA, respectively, that
remain at a given time point. Theoretical values for G1 and G2
were determined based on the doubling time of the cells as
described in Antoniewicz et al. (2007c). Fluxes were determined
at each sample time point of the nonstationary labeling experi-
ment using the ISA-based model. Further details of the ISA
procedure and its underlying assumptions are provided in the
supplementary materials.
2.12. Biomass equation

The dry weight of each cell was determined to be approxi-
mately 150 pg. This value was estimated by drying 70–150�106

cells in triplicate at 80 1C overnight. The composition of the dry
cell mass was estimated from the literature (Quek et al., 2010;
Sheikh et al., 2005). Non-protein components included in the
equation were nucleotides, lipids, and glycogen. The composition
used for each purine was assumed to be: one R5P, one GLY, one CO2,
and two MEETHF. The pyrimidine composition was assumed to be:
one R5P, one CO2, and 1 ASP, except for thymine which has one
additional MEETHF. One G6P was assumed to make one glycogen
monomer. The phospholipid fraction was assumed to be composed
of the following lipids: phosphatidylcholine, phosphatidylethanola-
mine, phosphatidylserine, phosphatidylinositol, phosphatidylgly-
cerol, and cardiolipin. In each case, these molecules were modeled
as having 17.43 AcCoA molecules and one DHAP with the following
additional requirements: phosphatidylserine requires one SER, phos-
phatidylinositol requires one G6P, phosphatidylglycerol requires an
additional DHAP, and cardiolipin requires an additional 17.43 AcCoA
and 2 DHAP. (17.43 is the AcCoA requirement for each pair of fatty
acid side-chains based on the average lipid composition reported by
Sheikh et al. (2005)). Glycolipids were assumed to be represented
wholly by sphingomyelin which was modeled as requiring 17.43
AcCoA and 1 SER. Sterols were modeled as cholesterol, which was
assumed to require 18 AcCoA molecules for biosynthesis. Stoichio-
metric coefficients were determined by multiplying the estimated
fraction of each biomass component by the cell dry weight and
converting to units of nmol/million cells (Zamorano et al., 2010).
3. Results

3.1. Cell metabolic phenotypes

The calculated growth rates and extracellular fluxes for both
High and Low Myc cells are shown in Table 1. Specific uptake and
excretion rates were determined for 18 of 20 amino acids, but
only 10 of those were consumed (or produced) in stoichiometric
excess of the amounts required for biomass synthesis. Growth of
Low Myc cells was 40% slower than High Myc cells, while glucose
uptake was reduced by only 21%. Both High and Low Myc cells
exhibited a highly glycolytic phenotype, with the majority of
incoming carbon excreted as lactate. This was most clearly
indicated by the lactate-to-glucose (L/G) ratios of 1.970.2 and
2.170.3 for High and Low Myc cells, respectively. Besides
glucose, glutamine is the other major carbon substrate for
mammalian cell cultures (Vander Heiden et al., 2009). Glutamine
uptake supplied 9% of total carbon to High Myc cells and 7% to
Low Myc cells. The uptake of most other amino acids was
similarly elevated in High Myc cells. The total amount of carbon
contributed by amino acids decreased from 28% in High Myc cells
to 20% in Low Myc cells, with uptake fluxes of arginine, gluta-
mine, histidine, isoleucine, leucine, lysine, methionine, serine,
tyrosine, and valine all significantly elevated in the High Myc
cells. Excretion fluxes of alanine, aspartate, and glycine were also
significantly increased in High Myc cells.
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3.2. Isotopic steady-state MFA—High Myc cells

Because the extracellular flux measurements do not provide
sufficient constraints to estimate intracellular fluxes involved in
cyclic or parallel pathways, we sought to apply isotope labeling
experiments and 13C MFA to generate a comprehensive flux map
of High Myc P493-6 cells. At least 6 doublings of the cell
population are required for the protein fraction to approach
steady-state labeling. We estimated fluxes based on the steady-
state labeling experiment both with and without ribose labeling
data. After adding the ribose measurements to the model, the
SSRES increased slightly above the acceptable 95% confidence
threshold of the associated chi-square distribution (from
SSRES¼11.7 with 8 degrees of freedom (DOF) to SSRES¼36.1
with 20 DOF). Despite this marginal lack of fit, we hypothesized
that the addition of ribose labeling measurements would improve
the precision of the flux estimates, especially within the PP
pathway where ribose precursors are generated. This hypothesis
was tested by computing the root-mean-square (RMS) error of
net flux estimates within glycolysis, PP pathway, and TCA cycle
(Table 2). We found that the addition of ribose labeling data
decreased the RMS error of net PP pathway reactions from 57% to
34% and resulted in an overall improvement in RMS error from
27% to 21%. These findings confirm our hypothesis that the
addition of ribose labeling measurements has a substantial
impact on the precision of flux estimates within the PP pathway.

3.3. Isotopically nonstationary MFA—High Myc cells

Because of the long experimental times required to reach
isotopic steady state, we performed a transient labeling experi-
ment on High Myc cells and analyzed the data using INST-MFA.
Metabolic fluxes were estimated using isotopomer data collected
at six time points: 6, 12, 24, 36, 48, and 72 h after tracer
introduction. This resulted in 376 independent mass isotopomer
Table 1
Extracellular fluxes for High and Low Myc conditions. Fluxes have units of nmol/106 ce

MFA flux estimations are marked with a |. The uptake rates of other amino acids (mar

they were solely used for biomass synthesis. These amino acids were not included in

Significance is indicated for the comparison between Low and High Myc conditions ba

High Myc Low My

Metabolite Flux (nmol/106 cells/h) Flux (nm

Biomass (h�1) 0.029370.0008 0.01767

Uptake Fluxes
Glucose 7375 587
Arginine 4.770.4 2.037
Asparagine 0.970.2 17
Cystine 0.7370.11 0.947
Glutamine 11.570.3 6.37
Histidine 0.7870.08 0.197
Isoleucine 2.570.2 1.47
Leucine 3.370.2 1.17
Lysine 2.0970.15 0.617
Methionine 0.6770.07 0.137
Phenylalanine 0.1370.17 0.327
Serine 4.170.2 1.447
Threonine 0.2770.04 0.617
Tyrosine 0.5870.06 0.157
Valine 1.4270.09 0.587

Excretion Fluxes
Lactate 13978 1197
Alanine 1.6570.11 0.767
Aspartate 0.3670.08 �0.577
Glutamate 2.870.3 3.117
Glycine 0.8470.11 0.027
measurements, which were combined with the 13 extracellular
fluxes indicated in Table 1 to estimate metabolic fluxes and their
95% confidence intervals. Each time point included proteinogenic
amino acid and RNA-ribose isotopomer measurements, except for
48 and 72 h, which only included amino acid measurements.
Fig. 2A shows the dynamic labeling trajectories of several selected
GC–MS fragment ions along with the INST-MFA model fits. (Fits
for the remaining isotopomer measurements are shown in Sup-
plementary Fig. 2A) The model was overdetermined by 240
measurements, and the fit was accepted based on a chi-square
test with SSRES¼91.7.

The High Myc flux map determined by INST-MFA is shown in
Fig. 3A. (Refer to Supplementary Tables 3 and 4 for a full listing of
flux values and 95% confidence intervals. Pool sizes were completely
unidentifiable or exhibited large 95% confidence intervals for most
metabolites except for those where labeling was directly measured.
Identifiable pool sizes and their 95% confidence intervals are shown
in Supplementary Table 5.) The oxidative PP pathway exhibited
negligible activity, with only 2% of the incoming glucose diverted
into this branch. Approximately 19% of the pyruvate synthesized
from glucose entered the TCA cycle, 79% was excreted as lactate, and
the remainder was converted to alanine. The majority (�73%) of
glutamine consumed by the cell was metabolized to a-ketogluta-
rate, with the remainder excreted as glutamate. Both ATP-citrate
lyase and mitochondrial malic enzyme were highly active, consum-
ing more than 35% of the citrate and 25% of the malate produced by
the cell, respectively. These enzymes are hypothesized to play an
important role in supplying carbon for lipid biosynthesis in tumor
cells (Moreadith and Lehninger, 1984).

3.4. Isotopomer spectral analysis (ISA)-based flux estimation—High

Myc Cells

As an alternative to INST-MFA, we applied an ISA-based
approach to estimate fluxes from nonstationary labeling data
lls/h except for biomass, which has units of h�1. Fluxes that were included in the

ked with a � ) were stoichiometrically matched to the growth rate, indicating that

the MFA flux estimations because their catabolism was assumed to be negligible.

sed on a two-tailed Student’s t-test with po0.05.

c

ol/106 cells/h) Included in MFA po0.05

0.0006 | |

4 | |
0.15 | |
0.2 | �

0.15 | �

0.2 | |
0.03 � |
0.2 | |
0.1 | |
0.05 � |
0.03 � |
0.07 � �

0.01 | |
0.06 � |
0.03 � |
0.05 � |

6 | �

0.12 | |
0.12 � |
0.03 | �

0.06 | |
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collected at 24, 36, 48, and 72 h after tracer introduction. The 24-
and 36-h time points were overdetermined by 19 measurements
while those at 48 and 72 h were overdetermined by 6 measure-
ments due to the lack of ribose labeling information. All estimates
returned SSRES values that were within the expected 95% con-
fidence range of the appropriate chi-square distribution. As
shown in Table 3, the G1 parameter, which represents the fraction
Table 2
Root-mean-square (RMS) percentage errors for selected net flux estimations.
RMS errors were calculated by first computing the percentage relative standard

error of each net flux (i.e., si=maxðvi,1Þ � 100%, where si is standard error and vi is

the net flux value). The resulting relative errors were combined by taking the

square root of the sum of squared errors divided by the number of fluxes in each

pathway. Reactions included in glycolysis, PP pathway, and TCA cycle are listed in

Supplementary Table 2. (SS w/w/o ribose¼steady-state with/without ribose

measurements included.).

Method Pathway Overall

Glycolysis PPP TCA Cycle

SS w/o ribose 5.7 57 31 27

SS w/ribose 5.5 34 32 21

ISA 24 h 5.5 54 42 29

ISA 36 h 5.5 54 30 26

ISA 48 h 5.0 62 27 27

ISA 72 h 4.9 60 22 26

INST-MFA 4.8 32 18 19

Fig. 2. Labeling dynamics of selected GC–MS fragment ions. GC–MS ions shown are f

ribose (RIB). Each panel shows the experimentally measured mass isotopomer abunda

measured under the (A) High or (B) Low Myc condition. Raw mass isotopomer data ar
of newly synthesized protein estimated from isotope labeling
measurements, was unidentifiable at time points prior to 48 h.
This is due to the low 13C enrichment of amino acids at these time
points and the inability of the ISA model to distinguish between
internal and external sources of isotope dilution. At later times,
the estimated G1 values differed significantly from theoretical
values derived from a simple dilution calculation (Antoniewicz
et al., 2007c). Because Antoniewicz et al. (2007c) provided a
simple bacterial growth medium that contained glucose as the
sole carbon substrate, they observed close agreement between
experimentally determined and theoretically predicted G para-
meter values. However, our mammalian culture medium con-
tained high concentrations of amino acids and other unlabeled
carbon sources. This additional source of isotope dilution resulted
in a large mismatch between the experimental and theoretical G1

parameters. In contrast, the ribose portion of RNA was apparently
derived exclusively from glucose carbon, and therefore the
trajectory of G2 values matched closely with the theoretically
predicted values in Table 3.

3.5. Comparison of MFA approaches

In order to select the most appropriate method for further MFA
studies, we compared the precision and accuracy of each flux
estimation approach. We compared steady-state MFA, 24-, 36-,
48-, and 72-h ISA, and INST-MFA based on the 95% confidence
intervals of net flux estimates. INST-MFA provided noticeably
or alanine (ALA), glycine (GLY), serine (SER), aspartate (ASP), glutamate (GLU), and

nces (data points) and INST-MFA model fits (solid lines) for a single fragment ion

e shown without correction for natural isotope abundance.



Fig. 3. P493-6 B-cell flux maps determined under (A) High and (B) Low Myc conditions. Net fluxes are shown in units of nmol/106 cells/hour. Fluxes are represented as

M7SE, where M is the median of the 95% flux confidence interval and SE is the estimated standard error of M calculated as (UB95–LB95)/3.92. (UB95 and LB95 are the

upper and lower bounds of the 95% confidence interval, respectively.) Arrow thickness is scaled proportional to net flux. Some fluxes included in the isotopomer model are

not shown in the figure to enhance clarity.

Table 3
Experimentally determined and theoretically predicted G1 and G2 dilution
parameters. Theoretical values are the same for both the G1 and G2 parameters

and were determined based on the High Myc condition growth rate of 0.0293 h�1.

RNA samples were not available for the 48 and 72 h time points, which prevents

the calculation of the G2 parameter at these times. Optimized parameter values

and their standard errors are shown.

Time point Dilution parameters

(h) G1 G2 Theory

6 3.3725.3 16.370.7 16.1

12 22.8724.0 30.771.1 29.6

24 34.4721.3 54.570.9 50.5

36 35.3719.7 66.971.1 65.1

48 40.778.7 N/A 75.4

72 51.175.5 N/A 87.9
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tighter confidence intervals for PP pathway and TCA cycle fluxes
(Fig. 4 and Table 2). We attribute this increase in precision
primarily to the transient labeling measurements of alanine and
ribose ion fragments, which are particularly sensitive to changes
in G6PDH flux (Supplementary Fig. 3). Furthermore, the overall
RMS errors of INST-MFA flux estimates were lower than those
obtained from any other method (Table 2). These comparisons
reveal that the INST-MFA method is the most robust approach to
determine fluxes in our system because of its enhanced flux
precision as well as its ability to integrate labeling data obtained
at multiple time points during the isotopically nonstationary
period. Despite these noticeable differences in precision, the
methods produced overlapping 95% confidence intervals for the
majority of flux estimates. All but 8 of the 56 net fluxes exhibited
overlap of their 95% confidence intervals when compared across
all methods. The only disagreements were between the steady-
state and INST-MFA experiments, which exhibited nonoverlap-
ping confidence intervals in the PP pathway (Fig. 4). This could be
attributable to biological variation between the experiments or
disturbances introduced by periodic replating of cells in the
steady-state labeling experiment. Furthermore, the SSRES of the
steady-state experiment was slightly outside the acceptable
range, which suggests that isotope labeling may not have been
fully equilibrated at the time of sampling. All other pair-wise
comparisons (steady-state vs. ISA or ISA vs. INST-MFA) exhibited
overlapping confidence intervals across all fluxes, indicating
statistical agreement. Overall, the methods were remarkably
consistent in light of the different labeling strategies (single vs.
multiple platings), seed densities, and modeling assumptions
applied in each case. In addition to providing superior flux
resolution, INST-MFA also imposes the least restrictive modeling
assumptions (e.g., no isotopic steady-state assumption) and is
therefore expected to be free from potential biases introduced by
the other methods.
We also sought to determine whether the increased precision
we observed in the INST-MFA flux estimates was due to the
increased total number of labeling measurements or to an
inherent increase in sensitivity associated with the transient
labeling measurements. We copied the steady-state labeling data
five times to simulate six replicate measurement sets. This
produced the same total number of isotopomer measurements
as in the INST-MFA data set. We re-estimated fluxes based on the
replicated steady-state measurements and found that there was
significant improvement in net flux precision over the original
steady-state dataset, but that INST-MFA still provided superior
identifiability of net fluxes in glycolysis and TCA cycle (Supple-
mentary Table 9). INST-MFA was also able to resolve a greater
number of exchange fluxes in comparison to steady-state MFA,
and the number of identifiable exchange fluxes was not impacted
by replicating the steady-state isotopomer measurements. Taken
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Fig. 4. Intracellular fluxes in the High Myc condition as determined by alternative MFA methods. A comparison of three flux estimation methods is shown based on 12

fluxes of central metabolism obtained under the High Myc condition (SS w/Ribose¼steady-state with ribose measurements included). Error bars represent 95% confidence

intervals on the flux estimates, and the plotted values represent the medians of the confidence intervals. The fluxes shown were chosen because their confidence intervals

exhibited the most variability across the three methods. (A) PP pathway net fluxes: glucose-6-phosphate dehydrogenase (G6PDH), ribulose-5-phosphate epimerase (R5PE),

ribulose-5-phosphate isomerase (R5PI), transketolase 1 (TK1), and transaldolase 2 (TA2). (B) TCA cycle and amphibolic net fluxes: pyruvate dehydrogenase (PDH),
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together, these results indicate that the increase in total number
of labeling measurements can partially explain the improved
precision of INST-MFA, but that the transient isotopomer mea-
surements contain some inherent flux information that is not
obtainable from the steady-state isotopomer measurements.

3.6. Isotopically nonstationary MFA—Low Myc cells

We next applied INST-MFA to estimate fluxes in Low Myc cells
because of its superior precision in determining fluxes of High
Myc cells. Furthermore, the short labeling time required for INST-
MFA is especially important in experiments with the more slowly
growing Low Myc cells, because it would require nearly two
weeks to achieve isotopic steady state in the protein fraction of
these cells. Fluxes were estimated from labeling data obtained at
six time points: 12, 24, 36, 48, 72, and 96 h after tracer introduc-
tion. We fit the isotopomer model to 402 independent mass
isotopomer abundances and 12 external flux measurements.
Fig. 2B shows the dynamic labeling measurements of several
selected GC–MS fragment ions along with model simulations
based on the best-fit parameters. (Fits for the remaining isotopo-
mer measurements are shown in Supplementary Fig. 2B) The
system was overdetermined by 263 measurements, and the fit
was accepted based on a chi-square test with SSRES¼89.0. (Refer
to Supplementary Tables 6, 7, and 8 for a full listing of estimated
flux and pool size values and 95% confidence intervals.) The data
clearly indicate slower labeling in the Low Myc cells when
compared to the High Myc cells, which agrees with the lower
rates of growth and substrate uptake shown in Table 1.

A comparison of the flux maps of the High and Low Myc cells
in Fig. 3 shows several noticeable differences in nutrient utiliza-
tion, as well as some unexpected similarities. Overall, the dis-
tribution of glycolytic and PP pathway fluxes was quite similar in
High and Low Myc cells, which was surprising in light of the 42%
reduction in growth rate exhibited by the Low Myc cells. Despite
a reduced rate of glucose uptake, the Low Myc cells exhibited a
slightly higher L/G ratio and a non-significant reduction in lactate
excretion rate. Small oxidative PP pathway fluxes were observed
in both conditions, which was just sufficient to meet the biosyn-
thetic demand for ribose-5-phosphate (R5P). On the other hand,
the most striking differences were found in mitochondrial meta-
bolic pathways, where the Low Myc cells exhibited 2- to 4-fold
reductions in all TCA cycle and amphibolic fluxes. Furthermore,
the Low Myc cells channeled a significantly lower percentage of
pyruvate into the TCA cycle (10% versus 19%). Glutamine uptake
was halved in Low Myc cells, but glutamate secretion remained
the same, resulting in a near 4-fold reduction in anaplerotic flux
from glutamine to alpha-ketoglutarate. This directly correlated
with a near 3-fold reduction in mitochondrial malic enzyme flux,
which functions to balance the flow of carbon leading to citrate
synthesis. The extrusion of citrate into the cytosol and its
subsequent degradation to AcCoA, a process that supplies carbon
for fatty acid synthesis and protein acetylation, did not change as
drastically as other mitochondrial fluxes and was closely matched
to growth rate. This fate accounted for 53% of the citrate produced
in Low Myc cells, but only 35% of the citrate produced in High
Myc cells, indicating a clear shift toward increased oxidative
metabolism in High Myc cells.

3.7. Oxygen uptake rates

The flux maps in Fig. 3 indicate a decrease in overall mito-
chondrial metabolism as a result of reduced Myc expression. We
hypothesized that this change would correlate with a decrease in
oxygen uptake rate (OUR) for respiratory processes. This hypoth-
esis was tested by direct measurement of OUR, which confirmed
that the Low Myc cells consumed oxygen at a rate of approxi-
mately 60% that of High Myc cells (Fig. 5). Oxygen uptake was
strongly dependent on mitochondrial Complex I, as it was almost
completely abolished in the presence of the Complex I inhibitor
rotenone in both High and Low Myc cells.
4. Discussion

The ability to quantitatively map intracellular carbon fluxes
using isotope tracers and metabolic flux analysis (MFA) provides a
powerful approach to identify functional network states and
regulatory mechanisms that characterize cell metabolism.
Although a handful of prior studies have used 13C MFA to examine
the role of specific oncoproteins (Gaglio et al., 2011; Kim and
Forbes, 2007) or cell signaling pathways (Forbes et al., 2006;
Grassian et al., 2011) in promoting global metabolic adaptations
of tumor cells, we postulated that applying 13C MFA to map fluxes
in P493-6 B-cells would allow us to quantify the direct metabolic
consequences of oncogenic Myc expression while minimizing the
confounding effects of clonal variability. The P493-6 B-cell line is
an EBV-immortalized line with a tetracycline-repressible Myc
expression construct (Pajic et al., 2001, 2000). This cell system
therefore provides a unique platform to investigate the effects of
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varying Myc expression within an isogenic background, and it has
been used successfully by other groups to assess the role of Myc
in regulating cell growth, metabolism, and apoptosis (Gao et al.,
2009; Hatzivassiliou et al., 2005; Kim et al., 2007, 2004; Le et al.,
2012; Liu et al., 2008; Schlosser et al., 2005). Furthermore,
because Low Myc cells are nontumorigenic while High Myc cells
resemble human Burkitt lymphoma cells, comparison of meta-
bolic phenotypes between Low and High Myc cells is expected to
reveal specific differences between normal proliferating cells and
cancerous cells (Yustein et al., 2010).

Using this B-cell model system, we proceeded to quantify
metabolic phenotypes under both Low and High Myc conditions.
We measured time courses of cell density and extracellular
metabolite concentrations throughout exponential phase, fol-
lowed by regression analysis to estimate specific rates of growth,
substrate consumption, and product excretion. Based on these
specific rates, we observed that High Myc cells significantly
increased their growth rate and the magnitude of most nutrient
uptake and excretion fluxes in comparison to Low Myc cells. This
is consistent with previous reports of the general stimulating
effect of Myc on cell growth and metabolism (Fan et al., 2010;
Morrish et al., 2009, 2008). In particular, Myc has been shown to
enhance flux through the glycolytic pathway by direct transacti-
vation of GLUT1, HK2, PFKM, TPI1, GAPD, ENO1 and LDHA genes in
studies of Rat1a fibroblasts and P493-6 cells (Kim et al., 2004;
Osthus et al., 2000; Shim et al., 1997). Although our results show a
modest increase in glucose consumption and lactate production
as a result of ectopic Myc expression, the relative changes in these
glycolytic fluxes were sub-proportional to the change in specific
growth rate we observed. On the other hand, most amino acid
uptake fluxes were increased 2- to 3-fold in High Myc cells
relative to Low Myc cells, which exceeded the 1.7-fold change
in specific growth rate. Therefore, ectopic Myc expression
impacted amino acid fluxes more strongly than glycolytic fluxes
in P493-6 cells.

Prior work has shown that glutamine metabolism is under
direct control of Myc (Gao et al., 2009; Wise et al., 2008) and that
Myc-overexpressing cells are particularly sensitive to glutamine
withdrawal or inhibition of anaplerotic glutamine flux entering
the TCA cycle (Fan et al., 2010; Wise et al., 2008; Yuneva et al.,
2007). Our results show that, in addition to strongly upregulating
their glutamine consumption, High Myc cells exhibited significant
increases in most other incoming and outgoing amino acid fluxes.
Fig. 5. Oxygen uptake rate of P493-6 cells under High and Low Myc conditions.
Oxygen uptake rates were measured in units of nmol/106 cells/h. Rates were

determined either in untreated cells (n¼11) or cells treated with 100 nM rotenone

(n¼2). Error bars indicate standard error of the mean values. Significance was

determined using a two-tailed Student’s t-test with po0.05.
Furthermore, nearly half of the incoming amino acids were
consumed in excess of their biosynthetic requirements, which
indicates that they were partially catabolized to meet the ener-
getic or redox demands of P493-6 cells. Aside from one study that
identified serine hydroxymethyltransferase (SHMT2) as a direct
Myc target gene (Nikiforov et al., 2002), little is known about how
Myc stimulates metabolism of other amino acids besides gluta-
mine. Based on our results, elucidating the mechanisms by which
Myc influences global patterns of amino acid utilization in tumor
cells represents a promising area of further investigation.

Despite much prior work to investigate the altered nutrient
requirements of Myc-overexpressing cells, quantitative informa-
tion about flux through intracellular metabolic pathways is not
obtainable based on analysis of extracellular measurements
alone. Therefore, we applied isotope labeling and 13C MFA to
further elucidate the intracellular flux distributions of P493-6
cells under Low and High Myc conditions. After considering
several alternative approaches, we concluded that a transient
isotope labeling experiment followed by INST-MFA would provide
the best overall accuracy and precision for flux determination in
our system. A comparison of flux maps generated under High and
Low Myc conditions not only confirmed the previously described
global increases in glucose and amino acid metabolism exhibited
by High Myc cells, but also revealed dramatic alterations in
mitochondrial metabolism. In contrast to the small relative shift
in glycolytic flux, we observed near 4-fold enhancements in most
TCA cycle and amphibolic fluxes in response to ectopic Myc
expression. We also observed a significantly higher rate of oxygen
consumption by High Myc cells in comparison to Low Myc cells,
although the relative increase in oxygen consumption was less
dramatic than the increase in TCA cycle flux determined by MFA.
This could be attributable to increased utilization of NAD(P)H for
anabolic metabolism in High Myc cells or to unavoidable differ-
ences in culture conditions that were required to determine
oxygen uptake rate (OUR). Despite these differences, however,
both the MFA and OUR measurements are qualitatively consistent
with an overall upregulation of mitochondrial metabolism in High
Myc cells. This increase in mitochondrial activity is likely neces-
sary to meet the increased ATP demands of High Myc cells, since
the observed increase in glycolytic flux is insufficient to support
the change in growth rate. Assuming a biosynthetic ATP require-
ment of 43 mmol/gDW (Sheikh et al., 2005) and our measured cell
dry weight of 150 pg/cell, the difference in ATP demand for
growth between High and Low Myc cells is approximately
75 nmol/106 cells/h. However, the difference in glycolytic flux
accounts for only half of this ATP production, the remainder of
which must be supplied by oxidative phosphorylation. The
increase in TCA cycle flux and oxygen uptake exhibited by High
Myc cells would more than compensate for the ATP deficit
attributable to glycolysis.

In addition to providing ATP to support enhanced growth of High
Myc cells, increased mitochondrial metabolism likely also plays a
role in promoting availability of biosynthetic precursors, such as
AcCoA that is needed for lipid biosynthesis and post-translational
modification of proteins (Morrish et al., 2009, 2010). Several recent
studies have reported that tumor cells growing under hypoxic
conditions or with mitochondrial defects shift to a reductive
carboxylation pathway to supply carbon for lipid biosynthesis
(Metallo et al., 2012; Mullen et al., 2012; Wise et al., 2011). This
involves conversion of glutamine to citrate by reversal of the
isocitrate dehydrogenase (IDH) reaction, which normally functions
to oxidize citrate in the TCA cycle. Although we could not precisely
assess the reversibility of IDH based on our measurements, the net
TCA cycle flux was determined to operate strictly in the forward
direction in both Low and High Myc cells. This does not preclude the
possibility of glutamine carbons becoming incorporated into citrate
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or fatty acids through reversible or cyclic action of IDH1/2 isoforms,
even in the presence of a net forward TCA cycle flux. However, Le
et al. (2012) have recently shown that when P493-6 cells were
grown in the presence of [U-13C5]glutamine under either aerobic or
hypoxic conditions, the labeling patterns of citrate reflect a pre-
dominantly oxidative mode of glutamine metabolism rather than
reductive carboxylation or its conversion to lactate.

One surprising finding of our study was the overall low level of
oxidative PP pathway flux in both High and Low Myc cells. This
could be due to the previously reported effects of Myc to enhance
mitochondrial capacity and thereby decrease production of reactive
oxygen species (ROS) in Myc-overexpressing cells (Morrish et al.,
2008). Oxidative stress is a key regulator of oxidative PP pathway
flux, which has been shown to decrease dose-dependently in
response to treatments that reduce ROS levels (Tuttle et al., 2007).
It is also possible that NADP-dependent isoforms of isocitrate
dehydrogenase (IDH1 or IDH2) or malic enzyme (ME1 or ME3)
provide the dominant source of NADPH required for biosynthesis
and redox homeostasis in P493-6 cells, and thereby diminish the
cellular demand for oxidative PP pathway activity.

To assess isotope labeling in our system, we relied exclusively
on GC–MS measurements of RNA-bound ribose and protein-
bound amino acids, following extraction and hydrolysis of
total cellular protein and RNA. The labeling patterns of these
macromolecular building blocks serve as proxies of the precursor
metabolites from which they were biosynthetically derived. This
‘‘retrobiosynthetic’’ approach is commonly used in microbial and
plant systems; however, the vast majority of recent 13C MFA
studies performed on mammalian cells have relied exclusively
upon direct extraction and isotopomer analysis of free intracel-
lular metabolites (Niklas and Heinzle, 2011). Lee et al. (1998)
previously applied mass isotopomer measurements of RNA-
derived ribose and lipid-derived palmitate to investigate PP
pathway fluxes in HepG2 cells but did not attempt to integrate
these labeling data within a comprehensive flux model of central
metabolism. Furthermore, we could identify only two previous
examples where 13C MFA has been applied to a mammalian
system based on isotopomer measurements of protein-bound
amino acids rather than free metabolites (Goudar et al., 2010;
Sriram et al., 2008). Although there are advantages and disad-
vantages to both approaches, and the preferred method will
clearly depend upon the biological system and questions to be
addressed, the most important benefits of the retrobiosynthetic
approach are (i) the high signal-to-noise ratio that is obtained due
to the abundance of protein and RNA within the cell and (ii) the
long-term stability of the macromolecule pools, which obviates
the need for sophisticated sample quenching and extraction
methods that are required to preserve the in vivo labeling state
of labile intracellular metabolites. The latter consideration is
particularly germane to the possible future extension of 13C
MFA to 3D culture systems or other cellular environments where
rapid sample collection is not practical. For example, harvesting
cells from semi-solid substrates such as collagen or Matrigel
typically requires incubation at altered temperatures, possibly
in the presence of proteolytic enzymes, in order to depolymerize
the matrix. These procedures are not compatible with current
metabolite extraction methods that have been developed for 2D
adherent cultures or suspension cultures where cells can be
readily recovered after quenching. One potential drawback of
the retrobiosynthetic approach is that it is only applicable to
actively proliferating cells; however, this would still encompass
the vast majority of cancer biology studies that are aimed at
identifying potential drug targets or biomarkers that are specifi-
cally upregulated in growing tumors. We anticipate that further
development of MFA approaches based on isotopomer analysis of
protein, nucleotide, and lipid building blocks will open the door to
novel investigations of tumor cell metabolism in non-traditional
culture systems, and perhaps eventually to in vivo tumors.

Prior to initiating MFA studies under both Low and High Myc
conditions, we compared several different approaches for collect-
ing and analyzing isotope labeling data as a function of time. To
date, most MFA studies have relied upon steady-state isotope
labeling measurements as inputs for flux estimation, rather than
transient isotopomer measurements (Niklas and Heinzle, 2011).
This simplifies the sampling procedure and furthermore reduces
the isotopomer model to a system of algebraic equations, which
can be solved more efficiently in comparison to the ODE-based
models that are required for INST-MFA (Quek et al., 2010). A
major drawback of the retrobiosynthetic approach, however, is
the slow labeling that occurs in protein and RNA fractions.
Because the turnover of these pools is linked to cell growth, at
least 6 cell doublings must be achieved under balanced growth
conditions and in the presence of tracer to achieve isotopic steady
state. Therefore, we examined the possibility of using a transient
isotope labeling approach to circumvent the practical difficulties
associated with prolonged tracer experiments.

We analyzed isotope labeling data collected at multiple time
points during exponential growth of P493-6 cells in simple flask
cultures using steady-state MFA, INST-MFA, and an ISA-based
pseudo-steady-state method. Comparison of all approaches
revealed that their net flux estimates were largely in agreement,
at least within the errors of the respective methods. The precision of
INST-MFA flux estimates was best overall and was dramatically
superior to other methods in resolving PP pathway fluxes. We
attribute this to enhanced sensitivity of the SSRES to transient
measurements of ribose and alanine labeling, particularly the
Ala232 and Rib284 fragment ions, which constrained the nonox-
idative branch of the PP pathway and indicated low net flux through
the pathway as a whole. INST-MFA has the further advantage that it
integrates all of the transient labeling data into a single flux map,
and it does not depend on isotopic steady-state or pseudo-steady-
state assumptions. Although INST-MFA has been previously applied
to other mammalian systems (Ahn and Antoniewicz, 2011; Maier
et al., 2009, , 2008; Munger et al., 2008; Young et al., 2008) and
bacterial systems (Nöh et al., 2007; Schaub et al., 2008; Young et al.,
2011), this is the first time that it has been used to analyze transient
labeling of macromolecular components such as proteinogenic
amino acids or RNA-ribose. Furthermore, only one prior study has
presented a systematic comparison between steady-state and INST-
MFA methods in the same system, and this work was restricted to
bacterial cultures (Noack et al., 2011).
5. Conclusion

Overall, 13C INST-MFA was the most effective strategy for flux
determination in P493-6 cells based on isotopic measurements of
protein-bound amino acids and RNA-bound ribose. This approach has
the advantage of relying exclusively on isotopomer measurements
derived from highly stable and abundant macromolecular pools,
while avoiding the long experimental times that would be required
to achieve isotopic steady state. We were able to precisely quantify
the rates of all major glycolytic, PP pathway, TCA cycle, and amphi-
bolic fluxes in P493-6 cells under both High and Low Myc expression
levels. High Myc cells relied more heavily on mitochondrial metabo-
lism than Low Myc cells and globally upregulated their consumption
of amino acids relative to glucose. Most TCA cycle and amphibolic
mitochondrial pathways exhibited near 4-fold flux increases in High
Myc cells, in contrast to modest increases in glucose uptake and
lactate excretion. The oxidative pentose phosphate pathway exhibited
minimal activity under both High and Low Myc conditions. This
approach can be readily extended to investigate the metabolic
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adaptations of tumor cells and other proliferating mammalian cells,
as well as their response to specific pharmacologic or genetic
interventions.
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