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Isotopically Nonstationary 13C Metabolic Flux Analysis

Lara J. Jazmin and Jamey D. Young

Abstract

13C metabolic flux analysis (MFA) is a powerful approach for quantifying cell physiology based upon a
combination of extracellular flux measurements and intracellular isotope labeling measurements. In this
chapter, we present the method of isotopically nonstationary 13CMFA (INST-MFA), which is applicable to
systems that are at metabolic steady state, but are sampled during the transient period prior to achieving
isotopic steady state following the introduction of a 13C tracer. We describe protocols for performing the
necessary isotope labeling experiments, for quenching and extraction of intracellular metabolites, for mass
spectrometry (MS) analysis of metabolite labeling, and for computational flux estimation using INST-MFA.
By combining several recently developed experimental and computational techniques, INST-MFA provides
an important new platform for mapping carbon fluxes that is especially applicable to animal cell cultures,
autotrophic organisms, industrial bioprocesses, high-throughput experiments, and other systems that are
not amenable to steady-state 13C MFA experiments.
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1. Introduction

The ability to quantitatively map intracellular carbon fluxes using
isotope tracers and metabolic flux analysis (MFA) is critical for
identifying pathway bottlenecks and elucidating network regula-
tion in biological systems, especially those that have been engi-
neered to alter their native metabolic capacities (1, 2). Typically,
MFA relies on the assumption of both metabolic and isotopic
steady state. Achieving this situation experimentally involves (1)
equilibrating the system in a stable metabolic state, (2) introducing
an isotopically labeled substrate without perturbing the metabolic
steady state, (3) allowing the system to establish a new isotopic
steady state that is dictated by the underlying metabolic fluxes, and
(4) measuring isotopic labeling in the fully equilibrated system
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(Fig. 1, upper-left panel). Depending on the relative speed of
metabolic versus isotopic dynamics, however, other experimental
scenarios can be envisioned. If the isotopic labeling responds
quickly to metabolic perturbations, quasi-stationary MFA (QST-
MFA; Fig. 1, lower-left panel) can be applied to obtain a series of
instantaneous snapshots that describes the variation in metabolic
fluxes over time (3, 4). Because of the quasi-steady-state assump-
tion on isotopic labeling, the isotopomer balances remain algebraic
in nature, and the computational treatment applied to each time
slice is essentially identical to that of steady-state MFA. Conversely,
if labeling occurs slowly but metabolism is maintained in a fixed
state, isotopically nonstationary MFA (INST-MFA; Fig. 1, upper-
right panel) can be applied to determine fluxes from transient
isotope labeling measurements (5). This requires repeated solution
of differential balance equations that describe the time-dependent
labeling of intermediate metabolites, while iteratively adjusting the
flux parameters in those equations to match the experimental mea-
surements. Finally, when measurements are obtained under both
metabolically and isotopically nonstationary conditions, a fully

Fig. 1. Overview of different MFA methodologies. The relative speed of metabolic and
isotopic dynamics will influence the type of MFA study performed. The upper-left panel
shows the typical MFA setup under both metabolic and isotopic steady state. The upper-
right panel shows INST-MFA at metabolic steady state, but not isotopic steady state. The
bottom-left panel shows quasi-stationary MFA (QST-MFA) at isotopic quasi-steady state,
but not metabolic steady state. The bottom-right panel shows Dynamic MFA, which is at
neither metabolic nor isotopic steady state.
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dynamic modeling approach is required to estimate time-
dependent fluxes (Fig. 1, lower right). This scenario has been
referred to as Dynamic MFA (6–8), and it is an area of ongoing
research for which appropriate methodologies and software tools
are currently under development.

In this chapter, we present up-to-date protocols for performing
INST-MFA under conditions of metabolic steady state, which has
now matured to the point where optimized methodologies and
software tools are rapidly emerging. INST-MFA holds a number
of unique advantages over approaches that rely solely upon steady
or quasi-steady isotopomer measurements.

1. 13C INST-MFA can be applied to estimate fluxes in autotro-
phic or methylotrophic systems, which consume only single-
carbon substrates (9, 10). This task is impossible with station-
ary 13CMFA due to the fact that all carbon atoms in the system
are derived from the same source and therefore will become
uniformly labeled at steady state regardless of the flux distribu-
tion (Fig. 2). However, the transient labeling patterns that
emerge following a step change from unlabeled to 13C-labeled
substrates can be analyzed by INST-MFA to determine fluxes
with precision.

Fig. 2. Example of carbon labeling in an autotrophic system. Following the introduction of
a labeled tracer to the system, intracellular metabolites become gradually labeled over
time. Once steady-state labeling is achieved, all metabolites are uniformly 13C labeled
irrespective of fluxes and intracellular pool sizes. Labeling patterns observed during the
isotopically transient period, however, can be computationally analyzed to determine
fluxes.
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2. INST-MFA is ideally suited to systems that label slowly due to
the presence of large intermediate pools or pathway bottle-
necks. This approach not only avoids the additional time and
cost of feeding isotope tracers over extended periods (e.g., see
Zhao et al. (11)) but may become absolutely necessary in cases
where the system cannot be held in a fixed metabolic state long
enough to allow isotopic labeling to fully equilibrate. As a
result, INST-MFA is expected to become an indispensible
tool for extending MFA approaches to studies of mammalian
systems (12–14), industrial bioprocesses (5, 15), and other
scenarios where attaining a strict isotopic steady state may be
impractical.

3. INST-MFA provides increased measurement sensitivity to sys-
tem parameters. A prime example is the observation that non-
stationary labeling measurements are sensitive to metabolite
pool sizes, whereas steady-state measurements are not (16,
17). This enables INST-MFA to estimate not only fluxes but
intracellular metabolite concentrations as well, which repre-
sents a potential framework for integrating metabolomic anal-
ysis with MFA. Several studies have also noted that
nonstationary measurements often exhibit increased sensitivity
to fluxes, especially to certain exchange fluxes (16, 18). There-
fore, collecting transient isotopic measurements over a range of
time points can improve the precision of flux estimates through
application of INST-MFA.

Despite its advantages, the increased complexity of INST-MFA
introduces additional difficulties at both the computational and
experimental levels. However, these challenges have been largely
addressed through recent technical advances.

1. The solution of large-scale ordinary differential equation
(ODE) models poses a substantial challenge to efficiently simu-
lating transient isotope labeling experiments. The application
of EMU decomposition to INST-MFA has greatly reduced this
computational burden and has enabled determination of fluxes
and accurate confidence intervals in biologically relevant net-
works (19, 20).

2. Introducing isotopically nonstationary measurements adds fur-
ther complexity to experimental design. In addition to the
design parameters that must be considered in the steady-state
case, INST-MFA requires selection of sampling time points and
metabolite concentration measurements. These new dimen-
sions make the search for an optimal experiment design even
more difficult and time-consuming. Several computational
tools have been developed to efficiently traverse this design
space, including parameterized sampling and a posteriori rank-
ing of measurement time points (16, 21).
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3. The labeling of intracellular metabolites in organisms with rapid
metabolisms exhibits very short isotopic transients on the sec-
onds time scale. Therefore, rapid sampling and quenchingmust
be applied to obtainmeaningful data. The field ofmetabolomics
has witnessed considerable progress in this area, and some of
these measurement techniques have already been successfully
adapted for INST-MFA studies in Escherichia coli (1, 18).

Overall, INST-MFA holds great potential for future applica-
tions. INST-MFA experiments are already performed in a fraction
of the time required for stationary MFA. If downstream sample
processing and data analysis can be streamlined and automated,
INST-MFA could soon become the basis for high-throughput
MFA approaches (18, 22). It is also likely that INST-MFA will
become the preferred approach for studies of plants, algae, and
animal cell cultures, where labeling is slow and lack of long-term
phenotypic stability can restrict the maximum duration of isotope
tracer experiments. In this contribution, we present the necessary
experimental techniques and computational procedures for
performing INST-MFA, with the aim of making this approach
accessible to a broader range of investigators within the metabolic
engineering and metabolic physiology communities. We focus on
those aspects of the analysis that are unique to INST-MFA and refer
the reader to other literature on isotopomer measurement techni-
ques and related methods that are common to both INST-MFA
and steady-state MFA approaches. We also restrict ourselves to
isotope labeling experiments performed on cultured cells, since
this is the most common experimental system that has been used
in INST-MFA studies to date.

2. Materials

2.1. 13C Labeling

Experiment

1. Cell culture at metabolic steady state (see Note 1).

2. Isotopically labeled substrates (see Note 2).

3. Syringes, valves, tubing, and associated equipment for introdu-
cing tracers and rapidly removing samples at precise time
intervals.

2.2. Quenching and

Metabolite Extraction

This protocol is appropriate for quenching and extraction of micro-
bial cells based on a modified Folch extraction method (23). Refer
to other references for quenching and extraction of plant cells (24)
or mammalian cells (25).

1. Chloroform.

2. Methanol.
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3. DI water.

4. Vortexer.

5. Benchtop centrifuge (capable of at least 5,000 rpm).

6. Centrifuge tubes (50 mL and 15 mL).

2.3. Extracellular Uptake

and Excretion Flux

Measurements

1. Cell culture at metabolic steady state (see Note 3).

2. Syringes, valves, tubing, and associated equipment for remov-
ing samples.

3. Analytical instruments (and associated reagents) for measuring
extracellular metabolite concentrations, such as GC–MS,
LC–MS, HPLC, biochemical analyzer, and microplate reader.

2.4. Mass Spectrometry

Analysis

1. GC–MS and/or LC–MS.

2. Derivatization agents, vials, heating blocks, and nitrogen evap-
orator for GC–MS sample preparation (see Note 4).

3. Vials, columns, gases, buffers, solvents, and other consumables
for GC–MS or LC–MS.

2.5. MS Data Processing 1. Computer equipped with either (1) freeware MS analysis soft-
ware (see Note 5) or (2) commercial software for searching and
integrating mass spectra.

2. Mass spectral library for compound verification, such as the
NIST/EPA/NIH Mass Spectral Database (26), Golm Meta-
bolome Database (27), FiehnLib (28), METLIN (29), HMDB
(30), or MassBank (31).

2.6. Isotopically

Nonstationary

Metabolic Flux Analysis

1. Computer equipped with research code or publically available
software capable of performing isotopically nonstationary met-
abolic flux analysis (INST-MFA), such as Isotopomer Network
Compartmental Analysis (INCA; http://www.vanderbilt.edu/
younglab), which runs through the computing environment of
MATLAB.

3. Methods

3.1. 13C Labeling

Experiment
The 13C labeling experiment should be initialized once a desired
cell density has been attained, and the system is at metabolic steady
state. A typical biomass sample size required for MS quantification
is in the range of 1–10 mg of dry cell weight (9). Therefore, the
volume and target cell density of the culture should be chosen so
that repeated samples can be efficiently collected and processed
without depleting the culture or significantly impacting its pheno-
typic state. It is suggested that cells be grown to the mid- to late
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exponential growth phase before introducing the tracer to batch
cultures, as this will provide for maximal cell densities and experi-
mental repeatability. Alternatively, the experiment could be per-
formed in a chemostat operating at an established steady state.
Once the tracer has been introduced to the system, repeated sam-
ples should be withdrawn and rapidly quenched so that the labeling
of intracellular metabolites can be accurately assessed at multiple
time points during the transient labeling period.

1. Introduce tracer to the system. Labeled substrates can be dis-
solved in media and rapidly fed via syringe injection to a batch
culture or by switching feed reservoirs to a chemostat culture.
Autotrophic cultures that rely on gassed CO2 can be connected
to a 13CO2-enriched gas feed. The introduction of tracer
should not alter the chemical composition of the culture envi-
ronment in a way that disturbs its metabolic steady state.

2. Remove samples at multiple time points (~5–15) prior to reach-
ing isotopic steady state. Samples can be manually withdrawn
using a syringe and needle at 20 s intervals, which is adequate
for INST-MFA experiments with animal, plant, and slowly
growing microbial cells. However, automated sampling tech-
niques have been developed for applications to E. coli and other
microbes that exhibit extremely fast isotopic transients in cen-
tral metabolism (5). Samples should be collected more fre-
quently near the beginning of the tracer experiment, as the
isotopic labeling will be changing most rapidly during this
initial time period. For example, Wiechert et al. (16) have
recommended using an approach where the length of each
time interval increases exponentially (e.g., 1, 2, 4, 8, and 16)
following an initial period where uniformly spaced samples are
collected at the maximum rate.

3.2. Quenching

and Metabolite

Extraction

1. After withdrawing each sample from the 13C-labeled culture,
initiate the quench by immediately spraying 1 volume of cell
culture (containing 1–10 mg cell dry weight) into a 50 mL
centrifuge tube containing 2 volumes of a 60/40 methanol/
water solution at �40�C (see Note 6).

2. Separate cells from the quenching medium by centrifuging at
5,000 rpm for 5 min in a benchtop centrifuge precooled to the
lowest temperature setting (e.g., �10�C). Aspirate the quench
solution from the cell pellet.

3. Resuspend cells in 4 mL chloroform (�20�C).

4. Add 2 mL methanol (�20�C).

5. Vortex tubes for 30 min in cold room.

6. Add 1.5 mL ice-cold water.

7. Vortex tubes for additional 5 min.
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8. Transfer to 15 mL centrifuge tubes.

9. Centrifuge at 5,000 rpm for 20 min at lowest temperature
setting.

10. Collect aqueous (upper) phase in a new 15 mL tube or two
microcentrifuge tubes.

11. Collect organic (lower) phase in a new 15 mL tube or two
microcentrifuge tubes.

12. Add internal standards if quantification of metabolite concen-
trations is desired.

13. Evaporate all extracts to dryness using nitrogen at room tem-
perature.

14. Store samples at �80�C.

3.3. Extracellular

Uptake and Excretion

Measurements

Extracellular uptake and excretion measurements are necessary to
define the absolute scale of the intracellular fluxes and to constrain
external fluxes that cross the system boundary. Regression analysis
has been previously applied to determine metabolic fluxes from
extracellular time courses of substrate depletion or product accu-
mulation (32–35). However, if these measurements are unavail-
able, all fluxes can be normalized to a fixed “reference” flux (e.g.,
the net CO2 uptake rate in autotrophic systems or the glucose
uptake rate in heterotrophic systems). We have recently developed
a program called ETA for performing the extracellular time-course
analysis (see Note 7). It should be noted that these measurements
typically require a separate unlabeled culture and a longer experi-
mental time course than the 13C labeling experiment.

3.4. Mass Spectrometry

Analysis

The pathways of interest will dictate the types of metabolites and
MS analysis to be performed. Generally, amino acids, organic acids,
fatty acids, and sugars can be analyzed using GC–MS following
chemical derivatization. Sugar phosphates and acyl-CoAmolecules,
on the other hand, are typically analyzed via LC–MS or LC–MS/
MS, to avoid thermal degradation of these nonvolatile analytes.
GC–MS analysis of a wide range of metabolites is most readily
achieved by (1) methoximation to prevent keto-enol tautomeriza-
tion followed by (2) conversion to trimethylsilyl (TMS) or tert-
butyldimethylsilyl (TBMDS) derivatives (36). GC–MS analyses of
derivatized amino acids, organic acids, and sugars are generally
analyzed on nonpolar columns, while fatty acids are analyzed on
polar columns. GC–MS analysis is typically performed in electron
ionization (EI) mode to generate multiple fragment ions of the
target analytes. LC–MS/MS analysis of sugar phosphates and acyl-
CoA molecules can be accomplished using an ion-pairing gradient
LC–MS/MS method with a nonpolar column and a solution of
tributylamine + acetic acid as eluent A and methanol as eluent B
(37). The acquisition of labeling and concentration data can be
performed using negative electrospray ionization in multiple
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reaction monitoring (MRM) mode. Initial suggestions for chro-
matographic parameters for GC–MS or LC–MS/MS are described
by Roessner et al. (38) and Luo et al. (39), respectively. These
parameters will typically need to be further optimized depending
on the target analytes of interest and the complexity of the sample
matrix.

3.5. MS Data Processing Analysis of MS data requires (1) identification of chromatographic
peaks and fragment ions associated with target analytes of interest,
(2) integration of ion chromatograms over time to quantify relative
abundance of specific isotope peaks, and (3) assessment of mea-
surement standard errors. In many cases, it is also desirable to
“correct” the raw mass isotopomer distributions (MIDs) to
account for the presence of naturally occurring stable isotopes.
Corrected mass isotopomer data provides a more intuitive picture
of the labeling that is attributable to the introduction of a tracer
compound and is generally the preferred method for presenting
data from an isotope labeling experiment. However, some INST-
MFA software, such as INCA, is capable of performing these
corrections internally, and therefore, it is only necessary to input
the raw, uncorrected MIDs.

1. Identify the chromatographic peaks associated with the analytes of
interest. This is based on both the retention time (RT) and the
MS fingerprint of the peak. Automated searching of mass spec-
tral databases can facilitate the identification of compounds
within complex mixtures. Furthermore, when pure standards
of the target analytes are commercially available, these can be
run separately or spiked into extract samples to confirm the
identity of uncertain peaks.

2. Identify ions to be used for mass isotopomer analysis and deter-
mine their molecular composition. The best GC–EI-MS frag-
ment ions are highly abundant ions with masses greater than
150 Da, since these are less likely to be contaminated by inter-
fering fragment ions of similar mass. Determining the elemen-
tal composition of these ionic species is facilitated by references
that list common fragmentation patterns and molecular rear-
rangements obtained for particular classes of compounds and
derivatization groups (24, 40). The precursor ions formed in
negative-ESI mode from LC–MS/MS analysis typically result
from simple proton extraction. Since current application of
LC–MS/MS to mass isotopomer analysis only makes use of
product ions that are formed without breaking the carbon
backbone of their precursor ions, the product ion spectra
reflect the MIDs of the intact precursor ions when 13C is used
as tracer (41).
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3. Integrate the mass isotopomer peaks using either custom or com-
mercial software. In order to maximize the accuracy of mass
isotopomer data, it is necessary to integrate each ion chromato-
gram over its full peak width and the exact same time window
of integration. It is important for these parameters to be deter-
mined consistently for all mass isotopomers of a given fragment
ion so that errors in the MID will not occur (42). This also
involves integrating all single ion traces over all scans of the
peak, including masses up to 3 Da heavier than the fully labeled
fragment ion. For example, to quantify the MID of a fragment
with monoisotopic mass 200 m/z and up to three-labeled
carbons, extract and independently integrate the ion traces of
200, 201, 202,. . ., 206. Normalize the integrated areas such
that the sum of all mass isotopomers for a given fragment ion is
1 (i.e., 100 mol %).

4. Correct mass isotopomer distributions (MIDs) for natural isotope
abundance (optional). The method of Fernandez et al. (43) can
be applied to perform the correction.

5. Calculate the mean and standard error of MIDs for each metab-
olite at each time point. In order to perform statistical analysis of
best-fit flux solutions, MFA software requires the user to input
standard errors of each mass isotopomer measurement. Typi-
cally, the precision (i.e., repeatability) of these measurements is
superior to their absolute accuracy (42). Inaccurate MIDs can
occur due to interference from overlapping fragment ions or
gas-phase proton exchanges that contaminate the mass spec-
trum of the target ions (44). Therefore, it is important to assess
both precision and accuracy using standards of known isotope
labeling. At minimum, it is necessary to run samples from
naturally labeled cell extracts and compare the experimentally
determined MIDs to theoretically predicted values. The
approach of Fernandez et al. (43) can be used to predict
MIDs of unlabeled samples based on reported values of ele-
mental isotope abundance (45). A more thorough error assess-
ment would also involve analyzing mixtures of labeled
standards to quantify the uncertainty in measuring MIDs that
differ from natural labeling (e.g., see Antoniewicz et al. (42)).
In general, fragment ions used for MFA should be accurate to
within 1.5 mol % (and preferably 0.8 mol %) of the predicted
value (36).

3.6. Isotopically

Nonstationary Metabolic

Flux Analysis

A flow chart of a typical INST-MFA process is shown in Fig. 3.
INST-MFA is concerned with solving an “inverse problem” where
fluxes and pool sizes are estimated from measured labeling patterns
and extracellular rates through the means of an iterative least-
squares fitting procedure. At each iteration, a “forward problem”
is solved where an isotopomer model is used to simulate labeling
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measurements for a given metabolic network and a given set of
parameter estimates. The discrepancy between the simulated and
measured labeling patterns is then assessed, and the parameter
estimates are updated to achieve an improving fit. Once conver-
gence to the best-fit solution is obtained, the procedure terminates,
and the optimal flux and pool size estimates are returned.

3.6.1. Build an Isotopomer

Model for INST-MFA

In order to perform INST-MFA, it is necessary to reconstruct a
metabolic network from biochemical literature and the annotated
genome of the organism of interest. This network must prescribe
both (1) the stoichiometry of all enzymatic reactions under consid-
eration and (2) atom transitions for each reaction (see Note 8).
Reactions must also be classified as either reversible or irreversible.

1. Construct a stoichiometric model including all substrates, pro-
ducts, and intermediate metabolites. When constructing a
model, it is important to strive for parsimony in describing
the available experimental measurements. The model must be
sophisticated enough to reconcile all available experimental
measurements while simultaneously avoiding unnecessary
complexity and redundancy that leads to overfitting of

Fig. 3. Flowchart showing the overall schematic of 13C INST-MFA. Following the labeling
experiment and MS analysis of the measured metabolites, computational analysis of the
dynamic changes in isotope labeling patterns can be used to estimate metabolic pathway
fluxes and pool sizes. This involves solving an inverse problem whereby the vectors of flux
(v) and pool size (c) parameters are iteratively adjusted until the mismatch between
simulated and experimentally measured data sets is minimized.
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parameters. Fortunately, there are statistical tests to assess
goodness-of-fit and to detect loss of precision due to overfit-
ting (presented in Subheading 3.6.5). Overly sophisticated
models can be reduced by (1) combining linear pathways into
a single reaction, (2) combining isoenzymes or parallel path-
ways that catalyze identical conversions, and (3) omitting irrel-
evant pathways based on biological knowledge, such as
repression of pathways under certain conditions (36). Addi-
tionally, if the cells are growing at a significant rate, all fluxes
toward biomass production can be lumped into a single bio-
synthetic reaction that summarizes the withdrawal of all neces-
sary growth precursors. Cofactors that contribute to energy
balancing (e.g., ATP) or redox balancing (e.g., NADH or
NADPH) are usually omitted from the model to ensure that
these difficult-to-quantify balances do not unduly bias the
resulting flux estimates (36).

Construction of a stoichiometric model can be further compli-
cated by (1) compartmentalization of metabolites, (2) reaction
reversibility, and (3) tracer dilution from unlabeled sources.
First, as a result of subcellular compartmentalization in eukar-
yotes, the same biochemical reactions can occur simultaneously
in different organelles, giving rise to multiple distinct metabolic
pools that must be treated as separate nodes in the isotopomer
model. Transport of metabolites between different compart-
ments also needs to be defined in the model (e.g., exchange of
pyruvate between the cytosol and mitochondria). Because each
metabolite measurement obtained by MS analysis represents an
aggregation of these different metabolic pools, pseudoreac-
tions can be introduced into the model to represent the contri-
bution from each compartment (see Note 9). However, this
also introduces additional parameters into the model that must
be determined from the isotopomer measurements. Second,
reaction reversibility is another crucial consideration, since
exchange fluxes (defined as the minimum of the forward and
reverse reaction rates) affect metabolite labeling patterns in
addition to net fluxes (defined as the difference between for-
ward and reverse reaction rates). While all enzymes are revers-
ible to some extent, many can be classified as practically
unidirectional as a result of thermodynamic and kinetic con-
siderations (e.g., pyruvate kinase in glycolysis). Third, enrich-
ment of the tracer can also be diluted by unlabeled sources,
such as CO2 present in air, unlabeled carbon sources in com-
plex culture media, or even breakdown of macromolecular
biomass components. The inclusion of these unlabeled sources
in the model can be critical to obtaining a statistically accept-
able description of actual experimental data sets.
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2. Classify each metabolite as balanced or unbalanced. Balanced
metabolites are intermediate nodes for which the total incom-
ing flux is constrained to balance the total outgoing flux.
Unbalanced metabolites can refer to any carbon sources or
sinks within the stoichiometric network, such as glucose or
biomass, respectively. Additionally, unbalanced metabolites
can also arise at intermediate nodes that exchange rapidly
with the extracellular environment, as is often the case for
CO2. It is important to distinguish between balanced and
unbalanced metabolites, since unbalanced metabolites do not
impose stoichiometric constraints on the network and their
labeling is typically considered to be fixed and externally
specified.

3. Specify the atom transitions for each reaction in the stoichiometric
model. It is necessary to include the atom transitions for each
reaction present in the metabolic network so that the fate of
each atom can be traced from substrate to product. Generally,
the atom mapping for a particular enzyme is conserved
between species and can be extracted from existing MFA mod-
els or articles found in biochemical literature. Furthermore, the
model must account for the scrambling that occurs due to
symmetric metabolites or chemically equivalent groups of
atoms (20).

4. Specify the tracer substrates and their positional 13C labeling.
This information is necessary to define the labeled inputs to the
isotopomer model.

3.6.2. Solve the Forward

Problem to Simulate

Labeling Measurements

In INST-MFA, the isotopomer balances are described by a system
of ordinary differential equations, which is significantly more
expensive to solve than the algebraic systems that describe steady-
state labeling. Due to this additional difficulty, algorithms for solv-
ing the forward problem of INST-MFA need to be carefully
designed so that computational expense does not become prohibi-
tive. The most efficient approach involves first decomposing the
isotopomer network into Elementary Metabolite Units (EMUs)
(19, 20). By only solving for the isotopomer distributions of
EMUs that contribute to the available measurements, this approach
minimizes the number of ODEs that need to be integrated and
thereby enables the forward problem to be solved thousands of
times faster than previous methods. This, in turn, increases the
efficiency of the inverse problem of INST-MFA because each itera-
tion of the parameter estimation procedure can be completed in
minimal time.

An EMU is defined as a distinct subset of a metabolite’s atoms
and can exist in a variety of mass states depending on its isotopic
composition. In its lowest mass state, an EMU is referred to as M0,
while an EMU that contains one additional atomic mass unit
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(e.g., as a result of a 13C atom in place of 12C atom) is referred to as
M1, with higher mass states described accordingly. An MID is a
vector that contains the fractional abundance of each mass state of
an EMU. To solve the forward problem of simulating metabolite
labeling in INST-MFA, the isotopomer network is first systemati-
cally searched to enumerate all EMUs that contribute to measur-
able MS fragment ions. Then, these EMUs are grouped into
mutually dependent blocks using a Dulmage–Mendelsohn decom-
position (46, 47) (see Note 10). Therefore, by definition, all EMUs
within a particular block have the same number of atoms and must
be solved simultaneously and not sequentially.

The decoupled blocks can be arranged into a cascaded system
of ODEs with the following form:

Cn � dXn

dt
¼ An � Xn þ Bn � Yn (1)

Level n of the cascade represents the network of EMUs within
the nth block. The rows of the state matrix Xn correspond to MIDs
of EMUs within the nth block. The input matrix Yn is analogous
but with rows that areMIDs of EMUs that are previously calculated
inputs to the nth block (or MIDs of source EMUs that are unbal-
anced). The concentration matrix Cn is a diagonal matrix whose
elements are pool sizes corresponding to EMUs represented in Xn.
The system matrices An and Bn describe the network as follows:

An i; jð Þ ¼ �sum of fluxes consuming; ith EMU in Xn i ¼ j
flux to ith EMU in Xn from j th EMU in Xn i 6¼ j

�

(2)

Bn i; jð Þ ¼ flux to ith EMU in Xn from j th EMU in Ynf (3)

1. Simulate the time course of isotope labeling. Given initial esti-
mates of all fluxes and pool sizes, Eq. 1 can be constructed and
then integrated. This can be accomplished using standard ODE
numerical solvers or specialized algorithms that take advantage
of the linear structure of this dynamical system, as described by
Young et al. (19).

2. Analyze the simulation results. Solving the forward problem
enables calculation of isotopomer distributions for each metab-
olite of interest, based on the initial flux and pool size estimates.
The simulated MIDs can be plotted versus time and compared
to the measured data. Fig. 4 shows an example of the labeling
dynamics of several metabolites in an autotrophic system using
13C-labeled bicarbonate as the tracer. The relative abundances
of unlabeled mass isotopomers (M0) dropped at the start of the
labeling period and were replaced by M1, M2, and higher mass
isotopomers following the introduction of tracer. Additionally,
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it is also informative to plot the average enrichments of various
MS fragment ions as shown in Fig. 5. The average 13C enrich-
ment is calculated using the following expression:

1

N

XN
i¼1

Mi � i (4)

where N is the number of carbon atoms in the metabolite and
Mi is the fractional abundance of the ith mass isotopomer.

3.6.3. Sensitivity Calculation Estimation of both the unknown fluxes and pool sizes using INST-
MFA is accomplished by finding a best-fit solution to the inverse
problem. Efficient solution of this problem typically relies on opti-
mization algorithms that choose the search direction based on the
gradient of the least-squares objective function (see Eq. 6) with
respect to all adjustable parameters. The most accurate and least

Fig. 4. Experimentally measured labeling trajectories of central metabolic intermediates (data points) and INST-MFA model
fits (solid lines) from an autotrophic INST-MFA study. The error bars represent standard measurement errors. Ions shown are
for 3-phosphoglycerate (3PGA), dihydroxyacetone phosphate (DHAP), ribose-5-phosphate (R5P), and ribulose-1,5-bispho-
sphate (RUBP). Nominal masses of M0 mass isotopomers are shown in parentheses (Adapted from Young et al. (10)).
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expensive way to obtain the required gradient information is to
integrate a system of sensitivity equations whose solution describes
how the calculated MIDs vary in response to changes in the model
parameters. Implicit differentiation of Eq. 1 yields the following
sensitivity equation:

d

dt

@Xn

@p
¼ C�1

n � An � @Xn

@p
þ @ C�1

n � An

� �
@p

� Xn

þC�1
n � Bn � @Yn

@p
þ @ C�1

n � Bn

� �
@p

� Yn

(5)

where p is the vector of adjustable flux and pool size parameters.
This system of equations can be solved in tandem with those of
Eq. 1, and the time-dependent sensitivities can be used to evaluate
the objective function gradient during each iteration of the INST-
MFA inverse problem. Furthermore, if approximate values of the
parameters are available prior to performing the labeling experi-
ment, calculation of measurement sensitivities can provide useful
information pertaining to parameter identifiability and experimen-
tal design.

3.6.4. Experimental Design While solving the forward problem is an important step in the
determination of fluxes using INST-MFA, it can also inform the
experimental design. The precision with which a particular flux or
pool size can be estimated, if at all, is solely determined by the
sensitivity of the available measurements to the flux in question,
which is a function of (1) the isotopic tracer applied, (2) the
structure of the metabolic network, (3) the intracellular flux distri-
bution, (4) the timing of the measurements, and (5) the

Fig. 5. Average 13C enrichments of selected ion fragments from an autotrophic INST-MFA
study. The labeling trajectory is shown for 3-phosphoglycerate (3PGA), fructose-6-phos-
phate (F6P), malate (MAL), and succinate (SUC) over the course of 10 min (Adapted from
Young et al. (10)).
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metabolites that are measured. Since (2) and (3) are not under the
control of the experimenters, the key elements of experimental
design entail choosing appropriate combinations of (1), (4), and
(5) to identify the fluxes of interest. For the most part, the prevail-
ing philosophy has been to measure as many metabolites as possible
that are relevant to the pathways of interest. Therefore, the focus of
experimental design has been on choosing the labeled substrate(s)
and sampling strategy that will maximize the precision of flux
estimates based on the available isotopic measurements. There is a
wide literature on optimal design of 13C labeling experiments, and
the extension of these concepts to INST-MFA experiments has
been presented by Wiechert and colleagues (16, 21).

3.6.5. Solving the Inverse

Problem to Determine Flux

and Pool Size Parameters

Fluxes and pool sizes are estimated by minimizing the difference
between measured and simulated data according to the following
equation (16, 20):

min
u;c

f ¼ m u; c; tð Þ � m̂ðtÞ½ �T �
X�1

m

� m u; c; tð Þ � m̂ðtÞ½ �

s:t: N � u�0; c�0

where f is the objective function to be minimized, u is a vector of
free fluxes, c is a vector of metabolite concentrations, t is time,
m u; c; tð Þ is a vector of simulated measurements, m̂ tð Þ is a vector of
observed measurements, Sm is the measurement covariance matrix,
and N is the nullspace of the stoichiometric matrix. A reduced
gradient method can be implemented to handle the linear con-
straints of this problem within a Levenberg–Marquardt nonlinear
least-squares solver (48, 49). Alternatively, gradient-free optimiza-
tion approaches have been applied by Noh et al. (16).

1. Perform the flux estimation analysis by minimizing the difference
between the measured and simulated measurements. The flux
estimation is performed by calculating the solution to Eq. 6.
To ensure a global solution is obtained, it is advisable to repeat
the parameter estimation from multiple initial guesses when
using a gradient-based local optimization search. Alternatively,
stochastic global optimization algorithms based on genetic
programming or simulated annealing can be applied to ensure
broad coverage of the parameter space.

2. Assess the overall fit of the flux estimation. Testing the goodness-
of-fit will determine whether the optimal solution is statistically
acceptable based on the minimized sum of squared errors (SSE).
At convergence, the minimized variance-weighted SSE is a sto-
chastic variable drawn from a chi-square distribution with n-
p degrees of freedom (DOF), where n is the number of indepen-
dentmeasurements and p is the number of estimated parameters.
The SSE that is calculated should therefore be in the interval
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w21�a
2
�, where a is a chosen threshold value corresponding to

the desired confidence level (e.g., 0.05 for 95 % confidence or
0.01 for 99 % confidence). The model fit is accepted when the
SSE falls within the limits of the expected chi-square range (50).
Additionally, the distribution of residuals should be assessed for
normality. The standard deviation-weighted residuals should be
normally distributed with a mean of zero and standard deviation
of one.One approach that can be used to evaluate the hypothesis
that the residuals are normally distributed is the Lilliefors test
(51). Various plots can also be constructed to assess normality of
the residuals.

3. Assess the goodness-of-fit of each measurement. In addition to
checking the overall distribution of the residuals, it is often
informative to plot the simulated and measured MIDs of each
MS fragment ion. Furthermore, one should check the residuals
between any measured extracellular fluxes and the estimates
derived from INST-MFA. This provides a visual assessment of
which measurements are mostly responsible for the lack of fit. If
a poor fit is obtained, further investigation needs to be per-
formed to identify the source of disagreement between experi-
mental measurements and the isotopomer model. There are
three possible causes for a poor fit that should be evaluated: (1)
there are gross errors associated with the measurements, (2)
there is an inappropriate weighting of the residuals, or (3) there
is a mistake or omission in the metabolic reaction network. One
should proceed by process of elimination to determine which
of these is the root cause of a poor fit and then take corrective
steps.

4. Identifymeasurements that contribute significantly to the precision
of estimated fluxes. The fractional contribution of each measure-
ment to the local variance of each flux can be calculated as
described in Antoniewicz et al. (50). The higher the contribu-
tion value, the more important the measurement is for deter-
mining a particular flux. Fluxes that depend on only one
measurement are very sensitive to errors in that one measure-
ment. It is therefore desirable that more than one measurement
significantly contributes to the estimation of each flux.

3.6.6. Calculate Parameter

Uncertainties

Once an optimal solution has been obtained, nonlinear confidence
intervals on the fitted parameters should be computed using
robust, global methods instead of relying solely upon local standard
errors. The local standard errors can be easily obtained from the
parameter covariance matrix at the optimal solution; however, they
do not accurately reflect changing sensitivities at points removed
from the optimal solution. Furthermore, the calculation of the
covariance matrix becomes ill conditioned when the Hessian of f
with respect to the fitted parameters is close to singular.
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1. Calculate the 95 % confidence intervals using either continuation
methods or Monte Carlo analysis. Parameter continuation can be
performed to calculate accurate upper and lower bounds on the
95 % confidence interval for each flux or pool size parameter
(50). This determines the sensitivity of the minimized SSE to
varying a single parameter away from its optimal value while
allowing the remaining parameters to adjust in order to mini-
mize Df. Large confidence intervals indicate that the flux
cannot be estimated precisely. On the other hand, small confi-
dence intervals indicate that the flux is well determined. Monte
Carlo simulation can also be used to calculate the 95 % confi-
dence intervals. This method is typically more expensive than
the parameter continuation approach but is expected to yield
similar results.

3.6.7. Report the Flux

Values and Flux

Uncertainties

Once an acceptable fit to the experimental measurements has been
achieved and confidence intervals have been computed for all para-
meters, the results are best summarized visually in the form of a flux
map. Fig. 6 shows an example of a flux map for the Calvin cycle and
glycolytic pathway of Synechocystis sp. PCC6803 determined under
photoautotrophic growth conditions using INST-MFA (10). Sev-
eral software tools have been recently developed, which aid in the
construction of these maps (see Note 11).

Fig. 6. Example of a flux map constructed for an INST-MFA study determined under photoautotrophic growth conditions.
This flux map shows the estimated fluxes associated with glycolysis and the Calvin cycle for a Synechocystis INST-MFA
study. Net fluxes are shown normalized to a net CO2 uptake rate of 100. Values are represented asM � SE, whereM is the
median of the 95 % flux confidence interval and SE is the estimated standard error of M. Arrow thickness is scaled
proportional to net flux. Dotted arrows indicate fluxes to biomass formation (Adapted from Young et al. (10)).
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4. Notes

1. These cell cultures can be grown in flasks or bioreactors with
working volumes ranging from 50 mL to 1 L, depending on
the sampling volume and number of samples to be taken, as
discussed in Subheading 3.6.4, “Experimental Design.” Vari-
ables that should be controlled or monitored include tempera-
ture, pH, dissolved oxygen, and nutrient concentrations.
Additionally, light intensity should be controlled for photoau-
totrophic cell cultures.

2. Until recently, most 13C labeling experiments have been per-
formed using labeled glucose tracers (e.g., [U-13C6]glucose,
[1-13C]glucose, [1,2-13C2]glucose, or mixtures thereof).
However, INST-MFA studies of photoautotrophic systems,
such as plants and cyanobacteria, by definition must rely on
labeling solely from 13CO2 or labeled bicarbonate. The choice
of tracer(s) should be made to provide the maximum amount of
information from the labeling dynamics while minimizing
changes to the chemical composition of the medium; this is
discussed further in Subheading 3.6.4, “Experimental Design.”

3. The cell culture used for measuring extracellular uptake and
excretion flux measurements should be different from the one
used in the 13C labeling experiment. This is due to the fact that
this cell culture does not require isotope labeling, and the time
course for this experiment will usually be longer than the 13C
labeling experiment.

4. Derivitization agents such as methoxyamine (MOX), trimethyl-
silane (TMS), or tert-butyl dimethylsilane (TBDMS) are typical
for GC–MS analysis. The MOX reaction protects ketone and
aldehyde functional groups and thereby prevents the formation
of multiple TMS or TBDMS derivatives. This step is unneces-
sary if no ketone or aldehyde functional groups are present in
the analytes of interest. TMS and TBDMS derivatives produce
several characteristic fragment ions that facilitate identification
(40). Huege et al. (24) provide a list of several GC–EI-MS ion
fragments of TMS derivatives that have been used for isotopo-
mer analysis. Ahn and Antoniewicz (52) provide a similar list for
TBDMS derivatized metabolites.

5. Available GC–MS freeware include AMDIS (http://chemdata.
nist.gov/mass-spc/amdis/) and Wsearch32 (http://www.
wsearch.com.au/wsearch32/wsearch32.htm). Two popular
freeware programs for LC–MS/MS data analysis are MZmine
and XCMS, the latter of which runs in the R statistical pro-
gramming environment. Both programs require the user to
convert raw data files into a nonproprietary format such as
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mzXML, NetCDF, or mzData. Conversion to mzXML format
can be accomplished using one of several instrument-specific
software tools developed and maintained by the Seattle Prote-
ome Center (http://tools.proteomecenter.org/software.php).

6. A �40�C bath can be achieved by creating a slurry of 4.5 M
calcium chloride chilled in a �80�C freezer for 3–4 h prior to
the start of the quench.

7. Extracellular Timecourse Analysis (ETA) is a software package
that has been coded in MATLAB (http://mfa.vueinnovations.
com). It can be used to estimate the specific growth rate as well
as the cell-specific uptake and excretion rates of extracellular
metabolites based upon time-course concentration measure-
ments.

8. Networks used for heterotrophic MFA typically include glycoly-
sis, pentose phosphate pathway, amino acid metabolism, TCA
cycle, and various amphibolic pathways that interact with the
TCA cycle. This backbone of central metabolic pathways may
be further augmented by additional reactions of interest. Some
helpful online databases include KEGG (Kyoto Encyclopedia of
Genes and Genomes; http://www.genome.jp/kegg/), BioCyc
(http://biocyc.org/), metaTIGER http://www.bioinformatics.
leeds.ac.uk/metatiger/), ENZYME (http://enzyme.expasy.
org/), and BRENDA (http://www.brenda-enzymes.info/).

9. One way to model pseudoreactions of compartmental mixing
in INCA is as follows:

0	G6P:plastid abcdefð Þ ! G6P:pseudo abcdefð Þ
0	G6P:cytosol abcdefð Þ ! G6P:pseudo abcdefð Þ

G6P:pseudo ! Sink flux fixed to 100ð Þ
These equations signify glucose-6-phosphate (G6P) coming
from two different compartments, the plastid and cytosol.
The letters in parentheses are the carbon atoms associated
with G6P. The “0” in front of the first two reactions indicates
that no carbon is actually withdrawn from the network, even
though the carbon labeling is preserved in the G6P pseudo-
metabolite (i.e., this essentially creates the G6P pseudo-
metabolite without siphoning carbon away from the “real”
metabolic network). The third reaction has a fixed flux set to
an arbitrary value of 100 so that the fluxes estimated for the first
two reactions represent the relative percentage contributions
from the two compartments. More pseudoreactions may be
added as more compartments are included in complex
networks.

10. Blocks are defined by sets of EMUs whose MIDs are mutually
dependent within the context of the EMU reaction network.

18 Isotopically Nonstationary MFA 387

http://tools.proteomecenter.org/software.php
http://tools.proteomecenter.org/software.php
http://mfa.vueinnovations.com
http://mfa.vueinnovations.com
http://mfa.vueinnovations.com
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://biocyc.org/
http://biocyc.org/
http://www.bioinformatics.leeds.ac.uk/metatiger/
http://www.bioinformatics.leeds.ac.uk/metatiger/
http://www.bioinformatics.leeds.ac.uk/metatiger/
http://enzyme.expasy.org/
http://enzyme.expasy.org/
http://enzyme.expasy.org/
http://www.brenda-enzymes.info/
http://www.brenda-enzymes.info/


The EMUs are arranged into blocks where the EMU reaction
network is regarded as a directed graph, where the nodes repre-
sent EMUs and edges represent EMU reactions. An N � N
adjacency matrix is constructed for the directed graph, whereN
is the total number of EMUs. A nonzero entry a(i, j) of the
adjacency matrix indicates the dependence of the ith EMU’s
MIDon the jth EMU’sMID.ADulmage–Mendelsohn decom-
position is performed on the adjacency matrix, returning an
upper block triangular matrix from which the diagonal blocks
are extracted. Blocks can be arranged so that each is a self-
contained subproblem that depends on the outputs of previ-
ously solved blocks, creating a cascaded system.

11. Several tools have been recently developed for flux visualization
in the context of metabolic networks, such as FluxMap (53),
FluxViz (54), faBINA (55), Omix (56), BioCyc Omics Viewer
(57), Reactome Skypainter (58), Pathway Projector (59),
MetaFluxNet (60), and OptFlux (61).
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