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Abstract 13C metabolic flux analysis (MFA) has made

important contributions to our understanding of the phys-

iology of model strains of E. coli and yeast, and it has been

widely used to guide metabolic engineering efforts in these

microorganisms. Recent advancements in 13C MFA

methodology combined with publicly available software

tools are creating new opportunities to extend this approach

to examine less characterized microbes. In particular,

growing interest in the use of cyanobacteria as industrial

hosts for photosynthetic production of biofuels and bio-

chemicals has led to a critical need to better understand

how cyanobacterial metabolic fluxes are regulated in

response to changes in growth conditions or introduction of

heterologous pathways. In this contribution, we review

several prior studies that have applied isotopic steady-state
13C MFA to examine heterotrophic or mixotrophic growth

of cyanobacteria, as well as recent studies that have pio-

neered the use of isotopically nonstationary MFA (INST-

MFA) to study autotrophic cultures. We also provide rec-

ommendations for the design and analysis of INST-MFA

experiments in cyanobacteria, based on our previous

experience and a series of simulation studies used to assess

the selection of measurements and sample time points. We

anticipate that this emerging knowledgebase of prior 13C

MFA studies, optimized experimental protocols, and public

software tools will catalyze increasing use of 13C MFA

techniques by the cyanobacteria research community.
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2PG 2-Phosphoglycolate

3PGA 3-Phosphoglycerate

ACA Acetyl CoA

AKG a-Ketoglutarate
ALA Alanine

ARG Arginine

ASN Asparagine

ASP Aspartate

CIT Citrate

CO2 Carbon dioxide

CYS Cysteine

E4P Erythrose-4-phosphate

F6P Fructose-6-phosphate

FBP Fructose-1,6-bisphosphate

FUM Fumarate

G1P Glucose-1-phosphate

G6P Glucose-6-phosphate

GA Glycerate

GLC Glycolate

GLN Glutamine

GLU Glutamate

GLY Glycine

GLYC Glycogen

GOX Glyoxylate

HIS Histidine

ICI Isocitrate

ILE Isoleucine
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LEU Leucine

LYS Lysine

MAL Malate

MET Methionine

OAA Oxaloacetate

PEP Phosphoenolpyruvate

PHE Phenylalanine

PRO Proline

PYR Pyruvate

R5P Ribose-5-phosphate

RU5P Ribulose-5-phosphate

RUBP Ribulose-1,5-bisphosphate

S7P Sedoheptulose-5-phosphate

SBP Sedoheptulose-1,7-bisphophate

SER Serine

SUC Succinate

THR Threonine

TP Triose phosphates, dihydroxyacetone phosphate

and glyceraldehyde-3-phosphate

TRP Tryptophan

TYR Tyrosine

VAL Valine

X5P Xylulose-5-phosphate

Introduction

Metabolic flux analysis (MFA) is a mathematical modeling

approach that can be used to comprehensively determine

the steady-state flow of material through intracellular bio-

chemical pathways (Sauer 2006; Wiechert 2001; Stepha-

nopoulos 1999; Nielsen 2003). The final outcome of MFA

is a metabolic flux map, which is essentially a traffic dia-

gram that depicts the in vivo activity of metabolic

enzymes. This information can be used to identify major

intracellular pathways and critical branch points in the

metabolic network, to calculate rates of otherwise unmea-

surable pathways, and to determine maximum theoretical

yields for synthesis of products or biomass from complex,

integrated biochemical pathways (Woolston et al. 2013).

However, MFA is most useful when flux comparisons can

be made between different strains or growth conditions and

also when combined with other ‘-omics’ datasets. This

enables researchers to understand flux control at metabolic

branch points (Vallino and Stephanopoulos 1994), identify

kinetic or regulatory bottlenecks in the metabolic network

(Antoniewicz et al. 2007b), and identify targets for re-

routing flux to desirable end products (or away from

wasteful byproducts). One classic example that illustrates

the application of MFA for selection of metabolic engi-

neering targets is the overproduction of lysine in the soil

bacterium Corynebacterium glutamicum, which has been

expertly summarized by Koffas and Stephanopoulos

(2005).

MFA begins with the translation of available biochem-

ical and genomic information into a set of mathematical

equations representing metabolite mass balances, which

can be augmented by various thermodynamic and/or reg-

ulatory constraints. Stoichiometric MFA approaches apply

these balance equations to solve for intracellular fluxes

based on measurements of extracellular substrate con-

sumption or product formation rates. However, the system

of mass balance equations is typically underdetermined for

realistic metabolic networks, and therefore, it is not pos-

sible to solve for all intracellular fluxes without making

additional ad hoc assumptions. In this case, optimization-

based or constraint-based methods are often applied to

explore the space of possible solutions, rather than

attempting to identify a unique flux solution. Alternatively,

additional measurements derived from isotope labeling

experiments (ILEs) can be used to generate an overdeter-

mined system of equations that can be solved using least-

squares regression. This requires that the metabolic model

is expanded to include isotopomer balances in addition to

metabolite mass balances, which together provide the

mathematical basis for 13C MFA calculations.

The elucidation of flux through reversible reaction steps,

metabolic cycles, or parallel intracellular pathways cannot

be accomplished using stoichiometric MFA unless these

pathways are linked directly to measurable end products.

This is an important consideration for the main pathways of

interest in cyanobacteria: the Calvin–Benson–Bassham

(CBB) cycle, the pentose phosphate pathway (PPP), the

tricarboxylic acid (TCA) pathway and its associated ana-

plerotic pathways, and the glycolysis and gluconeogenesis

pathways. These pathways serve to fix carbon dioxide into

organic molecules and then redistribute that carbon to meet

metabolic demands, but their flux is not directly coupled to

the production of readily measurable sink compounds.

However, since enzymes rearrange atoms in consistent and

distinct patterns, feeding 13C-labeled substrates provides a

way to distinguish flux contributions from different path-

ways based on the unique atomic rearrangements they

produce. Metabolite labeling is measured using either

nuclear magnetic resonance (NMR), which provides

information on the position of labeled carbon atoms, or

mass spectroscopy (MS), which offers greater sensitivity

and throughput than NMR but less positional information.

These isotope labeling data along with measured rates of

substrate uptake and product formation provide experi-

mental inputs that are used to regress the flux parameters

defined in the 13C MFA model.

Two different 13C MFA approaches have been applied

to cyanobacteria: steady-state MFA (SS-MFA) and
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isotopically nonstationary MFA (INST-MFA) (Fig. 1). The

term ‘‘steady state’’ refers to isotopic steady state, which

implies that labeling measurements are obtained after 13C

incorporation into intracellular metabolites has fully

equilibrated. Ideally, the experiment is performed in con-

tinuous culture to maintain metabolic steady state

throughout the ILE; alternatively, exponential-phase batch

cultures have been used to approximate metabolic steady-

state conditions. The isotope tracer is typically a mixture of
13C labeled glucose analogs, the composition of which

should be selected to maximize flux precision within the

pathways of interest (Antoniewicz 2013). Cell biomass

samples are harvested and hydrolyzed to measure 13C

labeling in proteinogenic amino acids, chosen for their high

intracellular abundance compared to free intracellular

metabolites and for the distinct metabolic pathways rep-

resented by their carbon precursors (Fig. 2). Based on the

assumptions of metabolic and isotopic steady state, the

isotopomer balances form a system of algebraic equations

that can be solved to simulate how isotope labeling

depends on the flux parameters in the 13C MFA model.

Sophisticated computational algorithms such as the

cumomer method and elementary metabolite unit (EMU)

method have been introduced to solve these equations

efficiently, which facilitate rapid flux estimation and sta-

tistical analysis, even in large metabolic networks (Wiec-

hert et al. 1999; Araúzo-Bravo and Shimizu 2003;

Antoniewicz et al. 2007a).

INST-MFA becomes necessary when the assumption of

isotopic steady state is no longer valid. It is especially

useful for studies of autotrophic metabolism, since feeding
13CO2 will eventually produce a uniform 13C-labeling

pattern in all downstream metabolites, and therefore,

steady-state labeling measurements do not reflect carbon

atom rearrangements within the network (Shastri and

Morgan 2007). However, transient measurements of iso-

tope incorporation following a feed switch from natural

CO2 to
13CO2 can be used to estimate autotrophic fluxes by

applying INST-MFA (Young et al. 2011). Our lab has

recently developed a package of MATLAB routines called

INCA that automates the computational workflow of INST-

MFA (Young 2014). This involves solving a coupled sys-

tem of ordinary differential equations that comprises the

transient isotopomer balances. INCA relies on the EMU

Fig. 1 Two 13C MFA approaches applied to cyanobacteria. MFA

begins with a set of mass balances describing a cell culture at

metabolic steady state. Feeding a 13C tracer and measuring isotopo-

mer abundances of intracellular metabolites can provide additional

information to constrain the flux solution. This involves least-squares

regression based on an expanded model that includes both mass and

isotopomer balances. Heterotrophic cultures can be analyzed by

performing steady-state MFA with labeling measurements obtained

from 13C-labeled glucose or glycerol tracers. Autotrophic cultures, on

the other hand, require transient 13C labeling experiments followed by

INST-MFA. S stoichiometric matrix, v flux vector
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framework to efficiently simulate transient 13C labeling

experiments (Young et al. 2008), making it the first pub-

lically available software package that can apply INST-

MFA to metabolic networks of arbitrary size and com-

plexity. The experimental system must be maintained at

metabolic steady state throughout the labeling time course,

but the tracer experiments are performed on a time scale of

minutes rather than hours in order to assess the dynamics of
13C incorporation. For this reason, isotopomer measure-

ments obtained from proteinogenic amino acids are not

useful for INST-MFA due to their slower rate of labeling.

Instead, rapid sampling and cold-quenching of cells is

required to fix the in vivo labeling state of central carbon

metabolites, which can be measured in cell extract samples

using a variety of mass spectrometry approaches (Jazmin

and Young 2013; Jazmin et al. 2014).

Berla et al. (2013) have recently reviewed applications

of stoichiometric MFA to cyanobacteria, and a number of

other recent articles have reviewed applications of 13C

MFA to examine general aspects of microbial metabolism

(Matsuoka and Shimizu 2010; Tang et al. 2009). In this

contribution, we first review prior applications of both SS-

MFA and INST-MFA to cyanobacteria as a way to high-

light its utility for discovering novel metabolic functions in

this important class of microbes. Then, we provide rec-

ommendations for design and analysis of INST-MFA

studies of cyanobacteria, since this is an emerging area of

research with few examples currently established in the

literature. These recommendations are based on our prior

experience with this technique as well as comprehensive in

silico studies that have been performed to optimize the

selection of measurements and sampling time points.

Applications of 13C MFA to cyanobacteria

Steady-state 13C MFA

Steady-state MFA was first applied to Synechocystis sp.

PCC 6803 to investigate central carbon metabolism under

mixotrophic and heterotrophic conditions (Yang et al.

2002a, b, c). The predominant mode of carbon utilization

was determined by analyzing metabolites using a mixed

feed of 90 % unlabeled glucose and 10 % fully labeled

[U-13C6] glucose. Heterotrophic cells were found to utilize

the oxidative PPP (oxPPP) almost exclusively for energy

production, with more than 90 % of the incoming glucose

metabolized by this pathway to produce NADPH for

growth and respiration. The coupling of NADPH produc-

tion to oxidative phosphorylation represents a unique

respiratory pathway found in cyanobacteria and is believed

to compensate for the lack of an intact cyanobacterial TCA

cycle (Pelroy et al. 1972). Under mixotrophic conditions,

Calvin cycle flux was approximately two-fold higher than

glucose uptake, fueled by NADPH and ATP production

from photosynthetic light reactions. However, flux through

RuBisCO still only accounted for one-third of the total

carbon uptake. The authors also noted a substantial cyclic

flux through phosphoenolpyruvate carboxylase (PEPC) and

malic enzyme (ME) under both heterotrophic and mixo-

trophic conditions, which is similar to the pathway of

carbon assimilation found in C4 plants.

In addition to their 13C MFA studies, Yang et al. (2002a)

compared mRNA transcript levels and protein expressions

with pathway fluxes to decipher mechanisms of metabolic

regulation. Consistent with their flux results, genes

encoding phycobilisomes, RuBisCO, and the Calvin-cycle-

associated gap2 isoform of glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) were all transcriptionally

repressed under heterotrophic conditions, while the oxPPP

gene gnd was upregulated by about 60 %. Conversely,

some expression levels did not appear to be in agreement

with the flux results, indicating post-translational regula-

tion by cellular redox or metabolite concentrations. For

example, several genes encoding enzymes of central

Fig. 2 Proteinogenic amino acids used to inform SS-MFA calcula-

tions. These building blocks, highlighted in red, serve as proxies of

central metabolic precursors. Their labeling patterns provide infor-

mation about flux partitioning at several important metabolic branch

points. Six independent net fluxes G6PDH glucose-6-phosphate

dehydrogenase, RBC RuBisCO carboxylase, RBCOX RuBisCO

oxygenase, SBP SBPase, ME malic enzyme, and MS malate synthase

are shown for reference and highlighted in green
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carbon metabolism including prk, zwf, gap1, fbp, pfkA,

fbaA, fda, glk, cfxE, ppc, icd, and citH were largely unaf-

fected by light at the transcriptional level despite dramatic

rerouting of flux through these pathways. This work

highlights the utility of 13C MFA to uncover novel insights

about regulatory mechanisms when combined with other ‘-

omics’ platforms.

Nakajima et al. (2014) combined 13C MFA with meta-

bolomics and transcriptomics analysis of Synechocystis to

compare cells grown under mixotrophic conditions and

photoheterotrophic conditions. Labeling was achieved by

an optimized 0.7:0.3 mix of [1-13C] glucose and [U-13C6]

glucose while atrazine was added to the photoheterotrophic

cultures to inhibit photosynthesis. Samples were taken

during the exponential growth phase, and nine proteino-

genic amino acids were selected for analysis: alanine,

aspartate, glutamate, phenylalanine, glycine, isoleucine,

leucine, serine, and valine. A comparison of the fluxes and

their 95 % confidence intervals showed that over half of

the fluxes differed significantly between the two culture

conditions. Changes in enzyme expression within these

pathways were less dramatic, with most genes differing by

less than two-fold between mixotrophic and photohetero-

trophic conditions. A six-fold increase in RuBisCo flux was

observed under mixotrophic conditions when compared to

photoheterotrophic conditions. However, there was no

significant change in the levels of RU5P or ribulose-1,5-

bisphosphate (RUBP) or expression of prk, rbcL, or rbcS.

OxPPP flux was elevated under photoheterotrophic condi-

tions to compensate for loss of photosynthetically produced

NAPDH, but gene expression was again unaffected. In

contrast to the previous study of Yang et al. (2002c), some

residual oxPPP flux was still detectable under mixotrophic

conditions. The authors attributed this to the lower light

intensity used in the more recent study (40 vs.

125 lmol m-2 s-1), consistent with model predictions

reported by Shastri and Morgan (2005). The gene that

exhibited the largest expression change was gap1, which

encodes an isoform of glyceraldehyde-3-phospate dehy-

drogenase (GAPDH) that is essential for glycolytic glucose

breakdown and was suggested to respond to NADPH levels

by shifting carbon flow between glycolysis and oxPPP.

Another recent study by You et al. (2014) confirmed

conclusions from previous studies but also provided a new

perspective on TCA cycle in Synechocystis 6803 under

mixotrophic growth conditions. In addition to 13C MFA,

isotope dilution experiments were performed to identify the

presence of particular pathways. To accomplish this, cells

were fully labeled using NaH13CO3 and [U-13C6] glucose,

after which unlabeled glyoxylate or glutamate was added to

determine the activities of specific reactions. Similar to the

flux analysis of Nakajima et al. (2014), this study calcu-

lated a zero flux through the glyoxylate shunt. The MFA

model yielded evidence of high malic enzyme activity in

agreement with the previous analysis by Yang et al.

(2002b). OxPPP flux was low under the light- and carbon-

sufficient conditions of the early-exponential phase, but

labeling in late-exponential phase indicated higher oxPPP

activity. You et al. focused particular attention toward

elucidating the direction and activity of the TCA cycle.

Isotope dilution with glutamate detected carbon flow

through a-ketoglutatarate to succinate, consistent with

activity of the a-ketoglutatarate decarboxylase bypass

pathway recently discovered by Zhang and Bryant (2011).

However, 13C MFA verified that flux through this pathway

was negligibly small, in agreement with previous MFA

studies.

In addition to Synechocystis, other strains of cyanobac-

teria have also become the subject of recent flux profiling

experiments. A steady-state 13C labeling study by Feng

et al. (2010) investigated the effects of different carbon and

nitrogen substrates on the central metabolism of Cyanot-

hece sp. ATCC 51142 under continuous light conditions.

Three labeled substrates were tested ([U-13C] glucose,

[2-13C] glycerol, and [3-13C] pyruvate) in either nitrogen-

fixing or nitrogen-sufficient conditions to determine their

impacts on growth and amino acid biosynthesis. GC–MS

was used to analyze the 13C enrichment of five amino

acids: histidine and serine, which are synthesized in the

Calvin cycle and PPP; alanine, which is derived from

pyruvate; and aspartate and glutamate, which are both TCA

cycle derivatives (Fig. 2). Glycerol addition doubled the

specific growth rate under both nitrogen-fixing and nitro-

gen-sufficient conditions, but neither glucose nor pyruvate

enhanced growth in comparison to a control photoauto-

trophic culture. Consistent with this observation, the con-

tribution of glycerol carbon to amino acid biosynthesis was

substantially higher than either glucose or pyruvate. Fur-

thermore, the amino acids histidine, alanine, and serine

were completely derived from glycerol carbon under

nitrogen-sufficient conditions, indicating a shift to photo-

heterotrophic growth. This study highlights the use of 13C

labeling studies to reveal major pathways of carbon utili-

zation in less characterized species.

Although Feng et al. (2010) made extensive use of 13C

labeling data to determine the contributions of extracellular

carbon substrates to intracellular amino acid pools, the

authors did not attempt to estimate intracellular fluxes

using rigorous pathway modeling. Another study by

Alagesan et al. (2013) provided a more comprehensive flux

analysis of Cyanothece sp. ATCC 51142 metabolism under

similar growth conditions. A comparison of these two

studies underscores the effects that culture conditions and

measurement availability have on the computed fluxes.

Both groups analyzed growth in nitrogen-sufficient and

nitrogen-fixing conditions using 13C-labeled glycerol as a
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carbon source. However, Feng et al. determined that a

glycerol-fed culture in nitrogen-replete media exhibited

photoheterotrophic growth in the presence of light, while

Alagesan et al. observed mixotrophic metabolism under

similar conditions. The variation in culture experimental

setup likely caused this difference, as the latter group chose

a higher light intensity (100 vs. 50 lmol m-2 s-1) to avoid

light limitation, and the cells were harvested early in the

exponential growth phase to maintain sufficient CO2

availability. Also, a greater number of amino acids were

analyzed by Alagesan et al., providing increased redun-

dancy and pathway coverage. This enabled 13C MFA to be

performed based on an extensive metabolic model that

included a complete TCA cycle, as recently reported by

Zhang and Bryant (2011). In both cases, the addition of

glycerol to the media resulted in a higher growth rate, and

both groups also noted incorporation of CO2 through ana-

plerotic pathways involved in the formation of oxaloacetate

(OAA) from PEP (i.e., C4-like metabolism). Further

evaluation of this strain would benefit from standardized

growth conditions and also by extending the 13C MFA

studies to include additional isotopomer measurements

beyond those obtained from proteinogenic amino acids.

13C INST-MFA

The development of software packages such as INCA has

enabled INST-MFA studies of autotrophic metabolism in

cyanobacteria, which complement previous studies that

have been limited to heterotrophic or mixotrophic condi-

tions. The approach was first applied by Young et al.

(2011) to the model cyanobacterium Synechocystis 6803

growing in a controlled photobioreactor. The study relied

on both GC–MS and LC–MS/MS to quantify labeling

trajectories of 15 intracellular metabolites following

administration of 13C-labeled bicarbonate to the culture

(Fig. 3). This was the first comprehensive flux analysis

performed based on isotope labeling data obtained in a

fully autotrophic system. Steady-state labeling was typi-

cally achieved in less than 10 min, with the notable

exception of TCA pathway intermediates (e.g., succinate,

fumarate, and citrate) that were more slowly labeled. The

flux map obtained using 13C INST-MFA was compared to

a previously published linear programing (LP) solution that

predicted the theoretical optimum flux profile needed to

maximize growth and minimize light utilization (Shastri

and Morgan 2005). Overall, the results indicated that

photoautotrophically grown Synechocystis cells exhibited

suboptimal carbon efficiency, with significant loss of fixed

CO2 via oxPPP. This provides an example of how flux

analysis can be used to identify pathways responsible for

reduced productivity, by pinpointing wasteful processes

that contribute to carbon losses. These pathways offer

potential metabolic engineering targets that can be

manipulated to increase flux to desirable products.

Earlier that same year, Huege et al. (2011) published

results from a transient 13C labeling study comparing wild-

type Synechocystis and two photorespiratory pathway

mutants pre-acclimated to either high carbon (HC) or low

carbon (LC) conditions. Although the authors did not

attempt to perform a comprehensive flux analysis, they

were able to assess metabolite turnover and provide local

flux estimates (e.g., sucrose production) based on the

observed dynamics of total 13C enrichment. Despite dif-

fering growth and labeling conditions, the wild-type results

were largely in agreement with the findings of Young et al.

(2011). It was determined in both cases that activity of C3

metabolism involving RuBisCO was the primary source of

carbon fixation, although C4 metabolism through PEP

carboxylase (PEPC) was active to a lesser degree as noted

in the Cyanothece studies (Feng et al. 2010; Alagesan et al.

2013). However, Huege et al. noted PEPC activity only in

LC conditions, whereas Young et al. calculated flux in the

equivalent of HC conditions. Both groups noted that Ru-

BisCO oxygenase activity was very low in the wild-type

strains. Also, the glyoxylate shunt was found to be inactive

in both of these studies, as no evidence was found in the
13C labeling data to support its presence under photoau-

totrophic conditions. Lastly, both groups noted the possi-

bility of metabolite channeling within pathways, where

enzymes catalyzing successive reactions cluster together

spatially in order to minimize diffusional limitations. This

effect was revealed by more rapid 13C enrichment and

higher steady-state labeling of some downstream metabo-

lites relative to upstream metabolites, which could not be

explained in the absence of metabolite channeling.

A similar transient 13C labeling study was recently

combined with intracellular metabolite profiling to inves-

tigate the response to nitrate depletion in cyanobacteria

(Hasunuma et al. 2013). In Arthrospira platensis and

Synechocystis 6803, the rate of 13C incorporation in central

carbon metabolites and amino acids was determined over a

thirty-minute period of labeling with NaH13CO3. In com-

parison with cells grown under nitrogen-replete conditions,

nitrogen depletion resulted in lower cell growth rate, lower

percentage of proteins in the cell, and higher glycogen

content. The 13C labeling data indicated that, with the

exception of glutamine and glutamate, the enrichment of

most intracellular metabolites was significantly decreased

in A. platensis cells cultivated without nitrate. These find-

ings suggest that cyanobacteria placed under nitrogen

stress conditions degrade intracellular proteins to amino

acids, which then serve as the carbon source for glycogen

synthesis.
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Study design for 13C INST-MFA of cyanobacteria

Measurement capabilities

In general, there are three types of measurements that are

useful for INST-MFA studies, listed here in order of

importance and discussed further below: (i) extracellular

exchange rates, (ii) intracellular 13C labeling, and (iii)

extracellular 13C labeling. Unlike related approaches such

as kinetic flux profiling (Yuan et al. 2008), direct mea-

surements of intracellular metabolite pool sizes are not

essential for flux estimation by INST-MFA (Young et al.

2011). The pool sizes are treated as adjustable model

parameters, which are optimized to match the experi-

mental labeling dynamics during the data regression.

This is a significant advantage of INST-MFA over other

modeling approaches that depend explicitly on pool size

measurements or kinetic parameters not reliably known

in vivo. While pool size measurements can be provided

to the data regression as a way to further improve flux

resolution, it is often difficult to achieve absolute quan-

tification of intracellular pool sizes due to losses

during metabolite extraction or unknown subcellular

compartmentalization of reactions. Furthermore, we have

learned from experience that precise flux estimates can

be obtained without provision of direct pool size mea-

surements. Therefore, we have avoided the potential

biases that may be introduced by including pool size

measurements in our INST-MFA calculations but instead

have used them to independently validate the model-

derived estimates.

To further examine the effects of pool size measure-

ments on estimated fluxes, we used our previous metabolic

model of Synechocystis 6803 and treated the pool size

estimates determined by INST-MFA as if they were

directly measured values, assuming 10 % relative errors.

From this simulated dataset, we computed a contribution

matrix based on local parameter sensitivities (Antoniewicz

et al. 2006). The contribution heat map (Fig. 4) shows that

the MS labeling measurements were most important for

determining the values of the net and exchange fluxes,

while the pool size measurements made negligible contri-

butions toward flux determination. Therefore, the avail-

ability of direct pool size measurements would not be

expected to significantly improve the precision of flux

estimates obtainable with this model.

Fig. 3 Workflow of INST-MFA in cyanobacteria. Labeled CO2 or

bicarbonate is fed to a culture at metabolic (quasi-) steady state, and

metabolite labeling is measured over time using mass spectrometry.

The mass isotopomer distributions (MIDs) of all measured

metabolites are compared with simulated values produced by a

mathematical model of the transient isotopomer balances. The fluxes

in the model are iteratively adjusted until the simulated MIDs match

their experimentally determined values
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Extracellular flux measurements

Measurement of extracellular exchange rates is required to

constrain the carbon inputs and outputs to the metabolic

network. For soluble metabolites, this involves measuring

the depletion of carbon substrates and the accumulation of

carbon products in extracellular medium samples collected

over time, followed by regression analysis to assess the

uptake/excretion rates of these metabolites (Murphy and

Young 2013). Cell-free medium samples should be ana-

lyzed in parallel to control for medium evaporation or

metabolite degradation. For gas compounds, it is often

necessary to use specialized equipment such as a gas

analyzer or online mass spectrometer to measure exchange

rates based on analysis of culture off-gas. Furthermore, a

cold-trap may be necessary to accurately quantify the for-

mation rate of highly volatile products such as short-chain

alcohols or aldehydes. Typically, if there are N exchange

rates, at least N-1 of these should be measured to fully

constrain the model (the remaining exchange rate can

always be determined based on the overall carbon balance).

For autotrophic growth of cyanobacteria, this means that

CO2 uptake must be measured in combination with the

production rates of all but one major carbon product.

Alternatively, the CO2 uptake measurement could be

dropped if all major carbon products are measured. Some

minor products can be neglected, depending on the accu-

racy desired, if they are considered to contribute insignif-

icantly to the overall carbon balance.

Intracellular isotopomer measurements

To fully constrain the intracellular fluxes, it is also necessary

to supplymeasurements of 13C isotope labeling to themodel.

In our previously published study (Young et al. 2011) on the

central metabolism of Synechocystis 6803, we used a com-

bination of LC–MS/MS and GC–MS to quantify isotope

labeling in several sugar phosphate and organic acid

metabolites following a pulse of 50 % NaH13CO3. While

NMR can also be applied to obtain direct information on

position-specific 13C labeling, its lower sensitivity and

throughput have limited its use primarily to steady-state 13C

MFA studies that rely on measurements of proteinogenic

amino acids rather than free intracellular metabolites.

The precision of flux estimates obtained from INST-

MFA is dependent upon the measurement of metabolite

labeling within the pathways of interest. In order to assess

the relative importance of the measurements included in

our prior study (Young et al. 2011), we used the same

model and flux estimates to simulate time-course mass

isotopomer measurements at the times listed in Table 1.

We then estimated best-fit model parameters using the full

complement of MS measurements and assuming

0.5 mol % uncertainties on all values (base case model).

Next, we separated all mass isotopomer measurements into

one of six groups based on their location within the met-

abolic network, as shown in Table 2, and re-estimated

fluxes after inactivating each group one-at-a-time. As

expected, inactivating measurements did not change the

best-fit values of the estimated fluxes, but their estimated

uncertainties were significantly increased in several cases.

To precisely quantify flux uncertainties, we computed

95 % confidence intervals (CIs) for six net fluxes, which

together span the null space of the stoichiometric matrix

and are therefore representative of all independent degrees

of freedom: G6P dehydrogenase (G6PDH), part of oxPPP;

RuBisCO carboxylase (RBC) and SBPase (SBP), both part

of the CBB cycle; RuBisCO oxygenase (RBCOX), part of

the photorespiratory (PR) pathway; malic enzyme (ME),

part of the PEP cycle; and malate synthase (MS), part of

the glyoxylate shunt. Figure 5 shows the fold change in

Fig. 4 Heat map showing contributions of pool size and isotopic

labeling measurements to estimated parameters. Each element of this

contribution matrix (e.g., at row i and column j) represents the

fractional contribution of the jth measurement to the local variance of

the ith parameter. The contribution values in each row sum to unity
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uncertainty for these six fluxes after inactivating each

measurement group. A group was considered to signifi-

cantly contribute to the identifiability of a particular flux if

the flux’s uncertainty increased by more than 1.5-fold in

response to inactivation of the group. Any groups consid-

ered significant based on this criterion were further

examined by inactivating each individual metabolite within

the group one-at-a-time to determine which contributed the

most toward the observed change in uncertainty.

The results from the flux uncertainty analysis fell into

natural groupings as shown in Fig. 5. The uncertainties of

G6PDH, RBC, and RBCOX fluxes increased by 1.5- to 1.6-

fold upon deactivation of the CBB-5C/7C group, yet fur-

ther analysis showed that this was a cumulative effect of all

four metabolites included in the group, rather than one

specific metabolite. Additionally, the uncertainties of

G6PDH and RBC nearly doubled with the inactivation of

the G6P measurement, and RBCOX quadrupled by the

inactivation of the PR pathway metabolite glycerate. The

second grouping contained the fluxes ME and MS, for

which significant changes were observed upon inactivation

of the TCA pathway measurements (over 5-fold and 2-fold,

respectively) and PEP cycle measurements (over 1.5-fold

and 2.5-fold, respectively). Citrate contributed the most

toward the importance of the TCA group, although no

single measurement within this group was responsible for

the entirety of the observed effect on either ME or MS.

Inactivation of MAL alone led to a nearly 2.5-fold increase

in the ME uncertainty and over a 1.5-fold change in the MS

uncertainty. Furthermore, inactivation of glycerate mea-

surements led to an almost 4-fold increase in the MS

uncertainty, likely because the substrate of this enzyme,

glyoxylate, is also an intermediate in the PR pathway. The

uncertainty of the remaining flux, SBP, was most strongly

affected by the inactivation of the two CBB cycle groups.

In this case, the change induced by dropping the CBB-3C/

6C group was most affected by DHAP (1.6-fold increase),

while the response to dropping the CBB-5C/7C group was

more clearly due to inactivation of the S7P measurement

(7-fold increase).

We also investigated the effects of varying the timing of

sample collections by inactivating different measurement

time points and re-estimating uncertainties for the same six

independent fluxes (Fig. 6). Although most flux estimates

were robust to dropping a few evenly spaced time points,

the identifiability of the SBP flux was affected quite

strongly by evenly spaced removal of time points,

increasing nearly 2-fold upon inactivation of odd time

points. This appears to be largely due to loss of information

at the early time points, since dropping all time points in

the range under 2 min (i = 1–5) caused the SBP flux

uncertainty to increase almost 4-fold. On the other hand,

the other five fluxes were more strongly affected by inac-

tivation of the late time points (i = 6–10). This is likely

due to the fact that insufficient labeling was obtained in

some slowly labeled metabolites (e.g., TCA cycle inter-

mediates) to adequately constrain the flux solution based

on the early time points alone. Predictably, inactivation of

all but three time points (i = 4, 7, and 10) resulted in

increased uncertainty of all fluxes, although the effect on

SBP was more dramatic.

Table 1 Time points chosen

for simulation of mass

isotopomer measurements

Exponentially spaced time

points were simulated as

suggested by Nöh and Wiechert

2006): ti = abi-1 for i = 1,

2,…, n, where t1 = a = 20 s,

n = 10, and tn = 900 s. The

exact times calculated using this

formula were rounded to the

values shown

i Ti (s)

1 20

2 30

3 45

4 70

5 110

6 165

7 250

8 390

9 590

10 900

Table 2 List of simulated ion fragments

CBB-3C/6C (G1) CBB-5C/7C (G2) TCA (G3) PEP-cyc (G4) PR (G5) OXPPP (G6)

3PGA185 (1.1) R5P229 (2.1) SUC247 (3.1) PEP167 (4.1) GA292 G6P259

3PGA357 (1.1) RUBP309 (2.2) FUM245 (3.2) MAL233 (4.2) GA307

3PGA459 (1.1) S7P289 (2.3) CIT273 (3.3)

DHAP169 (1.2) RU5P229 (2.4) CIT363 (3.3)

F6P259 (1.3) CIT375 (3.3)

GAP169 (1.4) CIT465 (3.3)

The measured ions were divided into one of six groups based on pathway location and size. The six groups contain CBB cycle 3- and 6-carbon

metabolites, CBB cycle 5- and 7-carbon metabolites, TCA pathway metabolites, PEP cycle metabolites, PR pathway metabolites, and oxPPP

metabolites. The groups were numbered as shown in parentheses, and in the case of G1–G4, ions representing individual metabolites were also

organized into numbered subgroups
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Extracellular isotopomer measurements

Measurement of isotope labeling in extracellular products

is typically unnecessary since their labeling simply reflects

the slow accumulation of material derived from a more

rapidly labeled intracellular pool. These measurements can

provide consistency checks on the intracellular measure-

ments, but usually do not contribute important new infor-

mation. On the other hand, it is important to estimate the

labeling of the tracer substrate itself, which could be 13CO2

or NaH13CO3 in photoautotrophic studies. This could be

estimated based on labeling measurements of CBB inter-

mediates obtained at long time points (after the system

reaches isotopic steady state), since the 13C enrichment of

intracellular metabolites should asymptotically approach

the tracer enrichment at these times. However, this estimate

could be biased downward if there are metabolically

inactive (i.e., ‘‘cold’’) pools that do not fully label even at

long times. Therefore, it would be useful to directly mea-

sure the enrichment of extracellular bicarbonate, although

this has not been done in previous INST-MFA studies. If

necessary, the model can account for the dynamics of

tracer mixing by including an extracellular bicarbonate

pool that gradually equilibrates with the tracer.

Experimental design

Cell culture experiments should be designed to mimic the

physiological conditions of interest as closely as possible,

in order to maximize the relevance of the MFA results. Due

to the substantial biological variance existing within many

organisms, the Metabolomics Standards Initiative has rec-

ommended a minimum of triplicate (n = 3) biological

sampling and analyses, with n = 5 preferred (Sumner et al.

2007). Measurement of extracellular exchange rates can be

performed using parallel experiments in the absence of

isotope tracers, or extracellular samples can be collected

from the ILEs to enable simultaneous measurement of

exchange rates and 13C enrichments from the same culture.

Prior to administering the 13C tracer, the culture metabo-

lism should have reached a stable quasi-steady state (QSS).

This is typically achieved during exponential growth of cell

cultures. Non-exponential cultures can also achieve QSS

metabolism as long as they are not experiencing rapid

Fig. 5 Effect of removing measurements on flux uncertainties.

Groups of measurements (G1–G6) were inactivated in the model,

and the 95 % confidence interval (CI) width for each of six

independent fluxes was recalculated and compared to the base case

model, which includes all measurements examined by Young et al.

(2011). If the CI width increased by more than 1.5-fold, the analysis

was repeated for each individual metabolite in the group to determine

which one(s) contributed most to the observed increase. See Table 2

for a list of measurements included in each group
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changes in growth rate or nutrient levels (i.e., any changes

in metabolism are slow relative to the time scale of the

isotope labeling experiment). However, in these cases, it

may be desirable to perform the labeling experiments in

continuous mode (i.e., in a chemostat or turbidostat) to

achieve maximum control and reproducibility. This would

ensure that the cultures are experiencing the same growth

rate and turbidity during each replicate experiment and will

also enable the culture to be maintained in a fixed QSS for

extended periods of time. The main drawback is that

continuous cultures are more complicated to operate and

may not accurately represent the growth conditions of

interest for bioprocess applications.

Once the QSS to be studied has been established, either
13CO2 or NaH13CO3 can be introduced to the culture.

NaH13CO3 can be introduced directly into the culturemedium

as a bolus (in batch mode) or as a prime-constant infusion (in

continuous mode). 13CO2 can be introduced by switching the

gas feed to a tracer mixture with identical chemical compo-

sition but with unlabeled CO2 replaced by 13CO2. In either

case, care should be taken not to disturb the previously

established metabolic QSS. One advantage of using a 13CO2

gas feed is that unlabeled carbonwill be rapidlywashed out of

the culture and replaced by the tracer. Shastri and Morgan

(2007) have performed computational simulations, which

demonstrate that an immediate step change in the enrichment

of dissolved CO2 is possible by selecting proper operating

conditions that account for the volumetric gas–liquid mass

transfer coefficient and composition of air (i.e., %CO2) fed to

the system. This labeling method enables the study of either

light-limited or CO2-limited cultures. If feeding NaH13CO3,

bicarbonate should already be at saturating levels so that the

additional NaH13CO3 bolus will not alter metabolism. In this

case, it is only possible to study light-limited cultures without

disturbing the QSS. Also, a significant amount of NaH13CO3

will need to be added to achieve adequate 13C enrichment of

the extracellular bicarbonate pool, since the tracer will be

diluted by the pre-existing unlabeled bicarbonate in the

medium. In our prior studies, we have found that at least 50 %

enrichment of the extracellular bicarbonate pool is sufficient

for precise flux estimation, although lower enrichments have

not been rigorously assessed.

Once the tracer has been introduced, a time series of cell

and medium samples should be collected at 5–10 time

points spanning 20 min to 1 h. The culture should be

sampled more frequently at early time points when labeling

is changing most rapidly (Noh and Wiechert 2006). Longer

time points (i.e., 1 h or longer), however, provide addi-

tional information especially useful for metabolites with

low turnover rates, such as those in the TCA cycle. The

biomass samples should be rapidly cold-quenched using a

low-temperature solution and centrifuged or filtered to

Fig. 6 Effect of removing time points on flux uncertainties. a Using

data simulated from the base case model, groups of time points were

inactivated as indicated to examine their effect on the CI width of six

independent fluxes. b Transient metabolite labeling data for

RUBP309 is shown as an example of the base case, with a dotted

line to separate time points 1–5 from time points 6–10 (upper), and of

time points 4, 7, and 10 only (lower)
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remove the spent medium (Krall et al. 2009). Then, the cell

pellet can be flash-frozen in liquid nitrogen or can proceed

directly into the metabolite extraction protocol. Culture

medium samples do not need to be rapidly cold-quenched

but instead can be centrifuged to remove cells and then

frozen for later analysis. If 13C flux analysis is to be per-

formed at multiple time points during the growth cycle, it is

recommended to use parallel replicate cultures and intro-

duce the tracer to each culture at different times, rather than

labeling the same culture repeatedly. The INCA program is

currently only able to describe experiments that begin with

an unlabeled (i.e., naturally labeled) culture at the time the

tracer is introduced, so repeatedly labeling the same culture

is not amenable to analysis.

Computational resources

In addition to the experimental requirements for INST-

MFA, there is also a substantial computational component.

This involves developing a mathematical model of the

differential mass and isotopomer balances that describe the

flow of carbon through the metabolic network. The INCA

software package automates the development and solution

of these balance equations (Young 2014). However, sig-

nificant user input is still required (i) to identify the proper

reaction equations and specify metabolite properties, (ii) to

supply experimental measurements and tracer information

to the model, (iii) to investigate and resolve points of

disagreement between the model simulations and the

experimental measurements, and (iv) to assess the quality

of the results and provide biological interpretation. In

addition to software, a small Beowulf computer cluster can

be used to speed up long-running computations. Although

many types of INST-MFA calculations can be performed

on a single computer, some types of calculations (e.g.,

sensitivity analysis to determine parameter uncertainties)

can take several days if not parallelized. INCA has built-in

capabilities for parallelization of certain time-consuming

processes, which can be invoked within a cluster comput-

ing framework. Our lab currently uses a cluster of eight

quad-core Dell desktop computers running the Rocks 6.0

Linux distribution (http://www.rocksclusters.org). INCA

can use either the MATLAB Distributed Computing Server

with Parallel Computing Toolbox or the Condor job

scheduler (pre-packaged with Rocks) to distribute jobs to

compute nodes within the cluster.

Conclusions & future outlook

13C MFA has emerged as an important platform to extract

otherwise unobservable information about metabolic

pathway fluxes through inference from experimental mea-

surements. While the models used for MFA are not

intended to be predictive on their own, the information they

provide can be used to develop and validate other types of

models (either stoichiometric or kinetic models) that pos-

sess predictive capabilities. Furthermore, the direct insight

derived from viewing a flux map can itself often lead to

intuitive predictions about pathway operation. Comparison

of flux maps obtained under varying experimental condi-

tions or in the presence of targeted genetic manipulations

provides a functional readout on the global impact that

these perturbations have on cell metabolism. This infor-

mation can be used to identify rigid nodes, which resist

change when neighboring enzymes are manipulated, and

flexible nodes that are amenable to easy modulation. Such

knowledge is critical for rational selection of metabolic

engineering targets.

While much prior work has focused on the develop-

ment of stoichiometric MFA models in cyanobacteria, and

in fact several genome-scale metabolic reconstructions

are now becoming available, the major disadvantage of

these models is that they cannot provide a unique flux

solution unless a cellular growth objective is postulated

(e.g., as in flux balance analysis, or FBA). In this case, it

is important to note that the flux solution obtained from

FBA does not represent the actual flux distribution within

the system but instead a theoretical solution predicted to

optimize growth. Therefore, even when FBA predictions

are available, performing 13C MFA studies can pinpoint

unexpected deviations between theoretically and experi-

mentally determined fluxes that indicate suboptimal

pathway function or a lack of understanding about path-

way operation. While some prior studies have found sat-

isfactory agreement between the two types of flux

solutions, others have noted significant disagreements

between the two (Schuetz et al. 2007; Young et al. 2011).

Indeed, it is precisely these disagreements between theory

and experiment that often suggest new discoveries, thus

highlighting the potential for 13C MFA to expand our

understanding of cyanobacterial metabolism. Realizing

this potential requires continued development of experi-

mental protocols and computational tools that facilitate

the application of 13C MFA to a wider range of cyano-

bacterial strains and growth conditions. The recent

emergence of the INST-MFA approach, along with

enabling software such as INCA, provides a significant

example of how 13C MFA is expanding its reach to

encompass new experimental systems (e.g., autotrophic

cultures) that were not previously amenable to study.
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