ALUMNI

MARYLYN VANLEER PECK

Lemonade from Lemons

When she graduated magna cum laude in chemical engineering from Vanderbilt in 1953, Marylyn VanLeer Peck wasn’t thinking about the engineering career that led to her son Bill Peck’s PhD in civil engineering. The University of Virginia and her master’s and doctoral degrees from Stanford, however, have been the foundation of his work in atmospheric and environmental engineering.

Marylyn VanLeer Peck was a graduate student at the Colorado School of Mines, where she was Research Assistant in Solid Mechanics. Her research interests included applied and experimental mechanics, materials science and engineering. She obtained her bachelor’s and master’s degrees from the University of Kentucky and earned a PhD in nuclear engineering from the University of Washington.

IN MEMORIAM

Howard L. Hardaway, Dean of Engineering at Vanderbilt from 1974-1992, died January 12 in his home in Sacramento, Calif. Author of the 1957 textbook Mine Ventilation and Air Conditioning, Dean Hardaway best knew for his work in underground coal mining, nuclear explosions, and mine ventilation, Dean Hardaway attended the Colorado School of Mines and went on to Penn State University, where he earned a master’s degree in nuclear engineering.

Peck was ultimately inducted into Tau Beta Pi about 20 years later, when women were finally eligible to join.

Thursday, they had the Tau Beta Pi banquet at Vanderbilt, I was chosen as the student to be inducted. That made my graduation complete in some way. I think I was finally, truly, a professional engineer.

The same professor also brought a woman all the way to Swarthmore. She was interested in electrical engineering. "I still told her to get into electrical engineering, but she changed her mind," Peck said. "I told her to get into electrical engineering, but she changed her mind."
Harris Named Orrin H. Ingram Distinguished Professor

Professor Charles F. Harris, Chair of the Vanderbilt University School of Engineering, has announced that Professor T. J. (Jim) Harris has been named the Ingram H. Ingram Distinguished Professor of Engineering.

Professor Harris was selected for this honor because of his exemplary leadership and expertise in biomedical engineering and research.

The Professor of Engineering is named in honor of the Ingram H. Ingram, B.S. Engineering, A.M. Engineering, and Ph.D. Engineering, a member of the American Society of Mechanical Engineers and a former chairman of the Vanderbilt University Board of Trustees.

Professor Harris has authored or co-authored more than 500 papers, presented over 100 invited talks, and served on the editorial boards of 10 journals.

He is a fellow of the American Institute of Medical and Biological Engineering and an IEEE fellow.

He is also an active investigator in the field of gene therapy.

Kenneth D. Frampton, SCEE, was an invited speaker at the 2001 Energy Technology Expo. He spoke on technological advances that could be of help to Schlumberger. Flowers credits his Vanderbilt Professor Davidson works with, have wide-ranging benefits which could be of help to Schlumberger. A very small world...
CAMPUS NEWS

Breckbill Teams Career Center With School of Engineering to Find Top Jobs for Students

Ryan Breckbill, Career Adviser for the School of Engineering, is on a mission. He recently met with a Student Development Dean at UC Berkeley to help engineering students find jobs that will satisfy their careers and support the lives they plan to lead after graduation.

Breckbill is proud to announce that VUSE is proud to announce that the Career Center and the School of Engineering at VUSE have completed a new arrangement to help students find employment. The new arrangement will improve the services students receive while also making it easier for employers to find and recruit engineering students.

CAMPUS NEWS

Rogers Wins 2001 NSF CAREER Award

Professor Rogers, known for her work in chemical vapor deposition reactor that deposits semiconductor and insulating films, has been awarded a 2001 NSF CAREER Award. The award will provide her with $400,000 over five years to study the development of novel materials and processes for the semiconductor industry and to establish an interdisciplinary research program.

FEATHERINGILL HALL OPENS

The new School of Engineering, which is part of VUSE, incorporates a number of advanced technologies and research laboratories. The school is designed to be a state-of-the-art facility for research and education.

LEADERSHIP DINNER

A Spirit of Enthusiasm

VUSE Honors One of Its Own at Leadership Dinner in Featheringill Hall

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner. The award recognizes outstanding contributions to the engineering profession and to the advancement of engineering education.

Six New Partners Join VaNTech Bioengineering ERC

The Vanderbilt-Atlanta Research Triangle (VaNTech) is a new bioengineering research center that is part of the National Science Foundation (NSF) Program in Bioengineering.

The new ERC will enable the center to bring together faculty, students, and researchers from the three institutions to conduct research and develop new technologies in the field of bioengineering.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner. The award recognizes outstanding contributions to the engineering profession and to the advancement of engineering education.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner. The award recognizes outstanding contributions to the engineering profession and to the advancement of engineering education.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.

Dr. Kenneth D. Frampton, Assistant Professor of Mechanical Engineering, has been honored at the Leadership Dinner held at VUSE Hall.

Dr. Frampton was presented with the VUSE Faculty Award at the Leadership Dinner held at VUSE Hall.
STUDENT NEWS

Students Keep Cargo from Getting Scrambled

When they leaving out the sky in a variety of shapes. There
were triangles. There were trees. There were square boxes.
There were tilted and twisted and a Leonardo da Vinci-like flying
screwy. All of it weighted in the right places. It was a light
and white and it was very precise in the annual engineering egg drop competition
sponsored by FedEx and held for the last 2 years.

While a clamoring crowd of several hundred participants
and observers swarmed from the ground below, some 40 contestants
each created an egg cage. Eggs were dropped from the vantage of the Parking-Lot Raceway in Sertel Center and on the
top most three stories below. Their flight times were checked and two faculty members, Ken Fraundorf and Art Ohrfeldt, helped
guess whether the cages carried the experience without any
even....

Teams of one to three engineering students were given an
hour to create their cages with a container of paper clips
found in the drop from the first floor of a FedEx building and a variety of other materials including a plastic bag. A total of 136 students
participated in the creative and produced 60 entries, making it
the largest one in the University’s largest open competition to date.

This year the rules were changed substantially from the previous year when students could pick up the FedEx boxes ahead of time and use a wide variety of materials. The cages broke at ratio of 10 percent of the entries. Which took away much of the suspense. So, instead of seeking out a higher drop point, the Engineering Council decided to limit the materials that competitions can use and have them create these entries in just an hour. The group also changed the criteria slightly. A cracked or broken egg still suffered in instant disqualification. But of those that survived, entries using the least material were ranked ahead of those using more material. Graduates were required to use all of the FedEx boxes. Finally, if any
of these boxes using the least material, the entries were ranked by
their drop times — the lighter the better. "We thought that they would make the competition more difficult and do a better job of differentiating between the void that went in the design.

David Brown, professor of the Engineering Council, found that the competition was the most Madapted of the council special events.

One entry was a drone cage. "I picked the shapes because
1111 because of the Earth's gravity. But it would not be right, I mean right, through them," he said. "I entered the contest last fall and won a whole crate. This year when they asked about the added weight.

ME Students Solve Vanderbilt Water Problem

A group of Vanderbilt mechanical engineering students used a laser scanner to solve a potentially catastrophic water problem that would have saved Vanderbilt about $50 million per year in utility expenses.

The University hit water while boring a tunnel between the Nashville Children’s Hospital and the power plant according to Robert L. Campell, Director of building and utility
for Plant Operations. The tunnel will house gas, steam and water utilities as well as communications lines for the new hospital.

There is a substantial amount of traffic to the tunnel from two sources. Campus police use it for the campus security and maintenance, but it also is a Vitale of use. There is a tube of ton, and we’ve got water in it at the main level of the building. The water is currently pumped up to a level above ground. There are also seven graduate students working in the lab during the summer months.

There are also graduate students working in the lab during the summer months.

The group had to crunch numbers for piping schematics, water flow and the various operation devices. Other water will be used to replace that lost from the irrigation systems that provide water for the athletic fields. The group had to perform various tests. "We took flow rate measurements on a number of valves that we opened," Bailie says. "We were able to get some decent estimates at 450 gallons per minute."

The group presented a solution to the campus on how to pump water be used to cool the bearings in a number of Plant Operations.

The group also presented a solution of how to use each of the three above uses.

The group also presented a solution of how to use

Water supplies all three above uses.

Vanderbilt engineers will pay for itself in reduced city water
to evaporation in the University’s cooling tower. Currently, city water is pumped into the tower and then is used to cool the air. It will be used to cool the air. It will be used to replace that lost from the irrigation systems that provide water for the athletic fields. The group had to perform various tests. "We took flow rate measurements on a number of valves that we opened," Bailie says. "We were able to get some decent estimates at 450 gallons per minute."

The group also presented a solution of how to use each of the three above uses.

Water supplies all three above uses.

Their achievement. He was recognized for his contributions to
developing software that provides an ability to design ready-maintainable jet aircraft engines, allows preventing routine maintenance costs by efficiently serviced by service personnel while greatly reducing overall development and cost. Chang came to Vanderbilt in 1998 as a postdoctoral
developing a robot prototype. He joined the group in the
department of Biological Engineering, and also did work on
effective repair and replacement in the future, thanks in part to

He predicts the project will pay for itself in reduced city
water costs all uses. There is no point in working on it if
we don’t get paid for it. We have to keep the team together.

Karen Talla, Diane Muratore, Allyson McAdoo and Robyn
Transfer will teach in the Master of

Endre Magyar, Research Associate, IDEC, joins VUSE from

University hit water while boring a tunnel between the Nashville
Children’s Hospital and the power plant according to Robert L. Campell, Director of building and utility
for Plant Operations. The tunnel will house gas, steam and water utilities as well as communications lines for the new hospital.

The group had to crunch numbers for piping schematics, water flow and the various operation devices. Other water will be used to replace that lost from the irrigation systems that provide water for the athletic fields. The group had to perform various tests. "We took flow rate measurements on a number of valves that we opened," Bailie says. "We were able to get some decent estimates at 450 gallons per minute."

The group also presented a solution of how to use each of the three above uses.

Water supplies all three above uses.

Their achievement. He was recognized for his contributions to
developing software that provides an ability to design ready-maintainable jet aircraft engines, allows preventing routine maintenance costs by efficiently serviced by service personnel while greatly reducing overall development and cost. Chang came to Vanderbilt in 1998 as a postdoctoral
developing a robot prototype. He joined the group in the
department of Biological Engineering, and also did work on
effective repair and replacement in the future, thanks in part to

He predicts the project will pay for itself in reduced city
water costs all uses. There is no point in working on it if
we don’t get paid for it. We have to keep the team together.

Karen Talla, Diane Muratore, Allyson McAdoo and Robyn
Transfer will teach in the Master of

Endre Magyar, Research Associate, IDEC, joins VUSE from

University hit water while boring a tunnel between the Nashville
Children’s Hospital and the power plant according to Robert L. Campell, Director of building and utility
for Plant Operations. The tunnel will house gas, steam and water utilities as well as communications lines for the new hospital.

The group had to crunch numbers for piping schematics, water flow and the various operation devices. Other water will be used to replace that lost from the irrigation systems that provide water for the athletic fields. The group had to perform various tests. "We took flow rate measurements on a number of valves that we opened," Bailie says. "We were able to get some decent estimates at 450 gallons per minute."

The group also presented a solution of how to use each of the three above uses.

Water supplies all three above uses.