Graphene Processing for Tunable Metasurfaces
Sarah Ruiz¹, Zachary J. Coppens², and Jason Valentine²
¹ Department of Physics, Grinnell College
² Department of Mechanical Engineering, Vanderbilt University

Metamaterials enable optical properties that cannot be found in nature. Through the use of graphene intercalation, we seek to create a tunable perfect absorber metamaterial that can be used for low power visible displays. A design for this metasurface has been developed; however, the graphene processing and characterization for the design have not been fully explored. Here, we study exfoliation techniques and etch rates of graphene for fabrication of the metasurface.

Abstract

Fabrication Procedure

- Use graphene exfoliation to transfer layers of graphene onto aluminum samples
- Etch graphene with argon sputtering to increase the speed of diffusion of sodium ions during intercalation
- Measure the step heights of the graphene flakes using AFM to determine etch rates

Graphene Exfoliation

1. Clean sample.
2. Remove graphene layers from graphite with adhesive tape.
3. Use tape to transfer graphene onto sample.
4. Anneal at 100°C for 2 minutes.
5. Slowly remove adhesive tape leaving behind graphene.

Argon Etching of Graphene

Etching Parameters: RF Power = 19W, ICP Power = 300W, Flow rate = 100 s.c.c.m., Table temperature = 10K, Pressure = 50mTorr

Results

- Graphene and Aluminum etch at about the same rate
- Etch Rate of Al = 0.8nm/min, however this is only based on one sample and should be verified

Conclusion

By sputter etching samples of aluminum and graphene we find that they both etch at 0.8nm/minute. This meets our expectations because sputter etching is a nonreactive method that will etch the sample if the surface binding energies are less than the kinetic energy of an incoming argon ion. This research will be used in the fabrication of both metallic and non-metallic metasurfaces for low power displays.

Acknowledgements

This work was supported by the National Science Foundation under award 1560414. I would also like to thank the VINSE Tech Crew, Anthony Freule, Kurt Heinrich, You Zhou, Zhihua Zhu, Austin Howes, and Fabian Ugwu.

References:
¹Laboratory for Graphene, Institute of Physics Belgrade, Serbia. http://www.graphene.ac.rs/exfoliation.html