Bridging the Gap: Photosystem I Initiated Polymer Growth For Solid-State Solar Cell Applications

Patrick Wellborn a,b, Max Robinson b, David E. Cliffel 5, and G. Kane Jennings b*

Department of Chemical Engineering, Washington and Lee University, Lexington, VA 24450
Departments of Chemical & Biomolecular Engineering and Chemistry, Vanderbilt University, Nashville, TN 37235

Introduction

Background:
Photosystem I (PSI) is a photosynthetic protein that drives photosynthesis in green plants. Once extracted, it can be placed on an electrode in order to convert light energy into electrical energy within a biohybrid cell.

Polymerization off of PSI with a semiconducting polymer, polythiophene (PT), would provide a route to more efficient PSI-PT electron transport within the active layer of solid-state devices.

Objective:
1. Grow polymer off of PSI via Surface-Initiated Ring Opening Metathesis Polymerization (SI-ROMP)
2. Explore two different polymer attachments to PSI
 1. Lysine-based from Amin termini
 2. Aspartic and Glutamic Acid-based from Carboxylic Acid termini

SI-ROMP
Lysine-Based Polymerization

Aspartic and Glutamic Acid-Based Polymerization

Monolayer Tests:

pNB6F Growth on PSI Monolayer

pNB6F Growth on PSI Monolayers

Results

Graph 1 shows that both Amide I and Amide II peaks of PSI remain unchanged after exposure to DCM, indicating that the secondary structure of PSI remained intact. SI-ROMP is most efficient in the organic solvent Dichloromethane (DCM). For DCM testing, PSI monolayers were exposed to two 15 minute intervals of DCM to simulate SI-ROMP preparation.

Graph 2 shows that PSI retains photoactivity after DCM exposure.

Monolayer Tests:

DCM Tests:

DCM Effect on PSI Monolayer

Effects of DCM on PSI Monolayer

Graph 3: FTIR results of SI-ROMP progression on PSI

The appearance of C-F stretching peaks from 1300-1100 cm\(^{-1}\) verifies the attachment of the NB6F polymer.

Graph 4: Ellipsometry results of pNB6F growth on PSI

Both attachment methods show polymer growth off of PSI monolayer.

Future Work

- Synthesis of an anchored polythiophene (PT) monomer to a norbornene backbone, providing for a covalently-wired and highly conjugated polymer matrix for efficient PSI-PSI charge mediation.

- Attachment methods initiated from terminal amines or terminal carboxylic acids allow for more consistent polymer growth.

Conclusions

- Successfully polymerized off of PSI via SI-ROMP using two different attachment methods
- Obtained polymer growth from both monolayers and multilayers of PSI
- Characterized polymer films using contact angles, FTIR, ellipsometry, and profilometry
- Discovered that Grubbs Catalyst physisorbs to PSI, effectively growing polymer from the unmodified protein surface
- Attachment methods initiated from terminal amines or terminal carboxylic acids allow for more consistent polymer growth

References & Acknowledgments

A special thanks to Vanderbilt Institute of Nanoscale Science and Engineering (VINSE) for use of analytical tools within the facility, Dr. Kane Jennings and graduate students Gabriel LeBlanc and Max Robinson for their continuous advising, and fellow REU Louis Thal for his carboxylic acid attachment scheme.

This work was supported by the National Science Foundation Research Experience for Undergraduates (DMR 1263182), the National Science Foundation (DMR 0907619), NSF EPSCoR (EPS 1004083), the United States Department of Agriculture (2013-67021-21029 USDA), the United States Environmental Protection Agency (SU8360221), and the Scialog Program from the Research Corporation for Science Advancement.