Macroporous TiO$_2$ Photoanodes for High Efficiency PSI-Based Biohybrid Photovoltaics

Yi (Jane) Jianga, Maxwell T. Robinsonb, David E. Cliffeld and G. Kane Jenningsb

Queensborough Community Collegec, CUNY, Bayside, NY 11364
Department of Chemical & Biomolecular Engineeringb, Vanderbilt University, Nashville, TN 37235
Department of Chemistryb, Vanderbilt University, Nashville, TN 37235

Introduction

Photosystem I (PSI)
PSI is a protein complex residing within chloroplast of photosynthetic organisms.

Dye-Sensitized Solar Cell (DSSC)
DSSC is a thin film solar cell with a dye-sensitized photoanode.

Problem: PSI is too large to get in to the TiO$_2$ coating.
Mesoporous TiO$_2$: Pore size less than 50nm
Macroporous TiO$_2$: Pore size greater than 100nm

Our approach:
make macroporous TiO$_2$ coating with pore size larger than the diameter of PSI through sacrificing templating.

Methods

Templating materials:
- Oil-in-water emulsion
- 60% paraffin oil, 40% water, Span 80, and Tween 80.
- Polystyrene latex
- Aqueous suspension; 1 µm in diameter.

Procedure:
Make a TiO$_2$ dispersion with templating materials
Doctorblade the templated TiO$_2$ dispersion on FTO
Sinter the film at 500 °C for 30 mins

Doctorblading:
TiO$_2$ is spread out on FTO by a razor blade.

Results of Macrotemplating

Templated macroporous films have been made from TiO$_2$ powder:
- SEM: macroporous films exhibit high porosity and interconnected pores. Templated by 60% oil-in-water emulsion and 1 µm polystyrene

Control: untemplated film
Cross section

Cross section

UV-Vis Spectrophotometry: after soaked in PSI solution for three days, macroporous films demonstrate high PSI incorporation.

Macroporous TiO$_2$ film turns green after soaking in 1µM PSI solution:

Electrochemical Analysis

Macroporous films exhibit significant enhancement in power and efficiency:

<table>
<thead>
<tr>
<th>Cell</th>
<th>P_{max} (µW/cm2)</th>
<th>Efficiency</th>
<th>Enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>macroTiO$_2$</td>
<td>9</td>
<td>0.10%</td>
<td>- (a)</td>
</tr>
<tr>
<td>macroTiO$_2$:monoPSI</td>
<td>46</td>
<td>0.48%</td>
<td>5.0 x a</td>
</tr>
<tr>
<td>macroTiO$_2$:monoPSI/multiPSI</td>
<td>82</td>
<td>0.86%</td>
<td>9.0 x a</td>
</tr>
<tr>
<td>mesoTiO$_2$</td>
<td>26</td>
<td>0.27%</td>
<td>- ("a")</td>
</tr>
<tr>
<td>mesoTiO$_2$:monoPSI</td>
<td>39</td>
<td>0.41%</td>
<td>1.1 x b</td>
</tr>
<tr>
<td>mesoTiO$_2$:monoPSI/multiPSI</td>
<td>33</td>
<td>0.34%</td>
<td>1.2 x b</td>
</tr>
</tbody>
</table>

Conclusion

- Macroporous TiO$_2$ films have been successfully made. They exhibit high porosity and interconnected meso (less than 50nm in diameter) and macro (on the order of micrometer) pores under SEM.
- The macroporous TiO$_2$ films demonstrate increased absorbance of PSI according to UV-Vis spectrophotometry.
- Using the designed macroporous TiO$_2$ film as a photoanode largely enhances the overall power and efficiency of PSI-based biohybrid photovoltaics due to the high integration of PSI and TiO$_2$.

Future Work

Further research will be carried to:
- continue to study the effect of the added porosity on PSI and TiO$_2$ interface through cell performance studies;
- to reduce diffusional constraints by raising the mediator concentration.

References

Materials Letters 2009, 64, 2619–2621.
Scientific Reports 2012, 2, 234

Acknowledgements

We gratefully acknowledge financial support from the NSF VINSE (DMR-1263182) and the United States Department of Agriculture (2013-67021-21029 USDA). A sincere thanks to Vanderbilt Institute for Nanoscale Science and Engineering (VINSE) for their expertise and sound advice. Special thanks to Faustin Mwambutsa, Ian Njoroge, Evan Gizzie, and to all the graduate students at Dr. Jennings’ lab and Dr. Cliffel’s lab.