Photosynthesis is the biological process by which green plants utilize photons (hv) from sunlight to produce chemical energy. Photosystem I (PSI) is one of the two main protein complexes involved in photosynthesis. Upon light absorption, an excited electron is shuttled from the P700 site to the iron cluster, F680. PSI-based solar cells mimic photosynthesis by generating current from the light absorbed by the protein.

Introduction and Objectives

Spinach

Photosystem I (PSI) is one of the two main protein complexes involved in photosynthesis. The photocurrent density values presented are the average from multiple replicates of the same device type. Conjugated PSI-CNT device shows a higher average photocurrent density than the control devices, but also a higher standard deviation.

Device Preparation

Device Type 1: PSI layered on top of CNTs
- CNT suspension was drop-cast on top of lightly p-doped silicon and dried under vacuum to form a thin layer of CNTs. Dialyzed PSI extract was then drop-casted on top of the CNT film and dried.

Device Type 2: Covalent PSI-CNT Conjugation
- PSI was covalently conjugated onto the CNTs to enhance the electron transfer between the two materials and to ultimately improve the photocurrent generated from the solar device.

Results and Conclusion

Overlaid UV-Vis Absorbance Spectra
- The absorbances were normalized to 1.
- PSI-conjugated CNTs demonstrate the characteristic PSI absorption peaks at around 430 and 670 nm, evidencing a covalent bond between the two.

Photocurrent Density Comparison of Different Solar Device Types and Control Devices
- The photocurrent density values presented are the average from multiple replicates of the same device type.

Future Directions

- Optimization of CNT deposition process may lead to increased uniformity of photocurrent between devices.
- Increasing the conjugation yield by increasing reaction times or optimizing reaction conditions should further improve device performance.

Acknowledgements

I would like to acknowledge and give thanks to Dr. Cliffel and his lab for their hospitality. Special thanks to my mentors Dilek Dervishogullari, Christopher Stachurski, and Kody Wolfe.

I also would like to thank the National Science Foundation (Grant #: 1560414) for funding and VINSE REU for the research opportunity.

References