Selective Functionalization of Leukocyte Subpopulations with E-Selectin Liposomes

Sarah A. Shibuya¹, Zhenjiang Zhang², Jenna A. Dombroski², Michael R. King²
¹Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN
²Department of Biomedical Engineering, Vanderbilt University, Nashville, TN

Introduction

- Metastatic tumors release circulating tumor cells (CTCs)¹
- TNF-Related Apoptosis Inducing Ligand (TRAIL) protein kills CTCs¹
- Liposomes bound to leukocytes effectively deliver TRAIL to CTCs²
- E-Selectin (ES) protein allows liposome-leukocyte binding²
- DSE-PEG lipid can increase liposome lifespan in circulation

Objective: Investigate how E-Selectin liposomes can functionallyize two subpopulations of leukocytes—monocytes and granulocytes—to yield a better understanding of how E-Selectin can assist in the delivery of TRAIL in antimetastatic therapies.

Materials and Methods

Liposome Fabrication
- Extrude a DiI-dyed lipid solution through 100 nm Whatman Nuclepore Track-Etch Membrane
 - Yields uniform-sized fluorescent liposomes with and without DSPE-PEG
- Varying numbers of E-Selectin/liposome
 - 0, 1, 2, 5 ES

Leukocyte Incubation and Analysis
- Using healthy patient blood, isolate monocytes and granulocytes via differential centrifugation
- Incubate leukocytes with fluorescent ES-liposomes
- Measure the fluorescence present on leukocytes using Guava easyCyte HT flow cytometer
- Gating and analysis performed via FlowJo and Prism

Results

Fluorescence increases in granulocytes with greater concentrations of E-Selectin

A
- **Granulocytes**
- **Monocytes**

B
- **% Fluorescence**
- **E-Selectin Concentration**

Absence of DSE-PEG in liposome fabrication yields a subpopulation of increased conjugation to granulocytes

Fig. 1: Analyzing presence of fluorescent liposome binding with varying amounts of ES using flow cytometry. (A) Histogram demonstrates shift of fluorescence with increased ES in granulocytes, indicating higher liposome binding. (B) Percent fluorescence of varying ES concentrations.

Liposomes without DSPE-PEG conjugate to both subpopulations of leukocytes

A
- **Granulocytes**
- **Monocytes**

B
- **DAPI nuclei dye (leukocytes), DiI lipid dye (liposomes)**

Fig 2: Fluorescence microscopy of leukocytes with liposomes without DSPE-PEG and varying concentrations of E-Selectin. White arrows indicate liposome-bound leukocytes. (A) Select granulocytes conjugate to liposomes despite presence of ES. (B) With ES present, monocytes conjugate to liposomes.

Conclusions

- Liposome attachment is dependent on the average number of E-Selectin per liposome in granulocytes, but not in monocytes
- Absence of DSPE-PEG can:
 - Cause attachment with high concentrations of E-Selectin in monocytes
 - Increase liposome attachment to a granulocyte subpopulation
 - Cause attachment to platelets

Future Directions

- Analyze effectiveness of TRAIL with varying E-Selectin concentrations
- Introduce fluid shear stress to mimic blood flow
- Investigate how liposomes without DSPE-PEG:
 - Affect monocyte conjugation with increased E-Selectin
 - Attach to different types of granulocytes

References and Acknowledgements

This work was supported by NSF-DMR 1852157.

Special thanks to VINSE for supporting my research through this REU. Thanks to Zhenjiang (Jason) Zhang and Jenna Dombroski for being fantastic mentors. Thank you to Michael King, María López Cavestany, and everyone in the King lab for supporting this project. Thanks to Sarah Ross and Jamie Kurtz for making this experience possible.