Motivation

- **Triple Negative Breast Cancer (TNBC):**
 - TNBC demonstrates relatively high rate of locoregional recurrence after radiation therapy (13.5%)\(^1\)

- **Circulating Breast Cancer Cell Invasion:**
 - Lack of lymphocytes encourages macrophage infiltration tumor cell infiltration, indicating lymphocytes play a role in preventing tumor recurrence\(^2\)
 - Cellular mechanisms behind increased invasion are unknown

Significance of The Extracellular Matrix (ECM):

- Focal adhesions are promoted by ECM stiffness, which mediates cell to cell interactions\(^3\)
- Radiation induces fibrosis in the tumor microenvironment by inducing fibrosis, leading to changes tumor progression

Hypothesis

- **Tumor Microenvironment:**
 - Irradiated ECM promotes displaced cell invasion
- **Chemotherapy:**
 - Increases E-Cadherin expression and decreases Vimentin

Changes in the ECM Induced by Radiation Therapy

- Astromicroenvironment transition is characterized by increased Vimentin expression and decreased E-Cadherin expression, leading to increased cell invasion\(^4\) 4T1 cells express higher levels of vimentin when seeded into irradiated ECM microenvironments, however, increases in E-cadherin were also noted.

Conclusions & Future Work

- **4T1 cell invasion properties observed:**
 - F-actin/cortactin colocalization and invasion assay quantification indicate 4T1 cells experienced increased invasiveness in irradiated ECM microenvironments derived from CD6+T cell depleted Balb/c mice
 - General trend of higher vimentin and E-cadherin expression in irradiated ECM microenvironments
 - Limited by lack of quantitative analysis

Future work:

- Developing methodology for quantifying expression of vimentin and E-cadherin in cells
- Expand mouse model to include bone marrow-derived macrophages to understand differences in 4T1 cell invasion for immunocompetent vs lymphopenic mice
- Determine changes in other ECM components after radiation to examine immune response effects

Acknowledgements

A special thanks to the VINSE department, Sarah Ross and Jamie Kuntz for supporting this REU. Another thanks to Tian Zhu, Dr. Marjan Rafat, and the Rafat group for the mentorship. Thank you to the National Science Foundation for their funding (NSF-CMMI 1852157).

\(^3\) Rafat M., et al. (2014, November 13). The extracellular matrix modulates the hallmarks of cancer. 3DROD Reports, 1(2), 184-185.