Single-Event Burnout in Vertical β -Ga₂O₃ Diodes with Pt/PtO_x **Schottky Contacts and High-k Field-Plate Dielectrics**

on LinkedIr

¹Interdisciplinary Materials Science Program, Vanderbilt University ²Electrical and Computer Engineering, Iowa State University ³Department of Electrical and Computer Engineering, Vanderbilt University ⁴Materials Department, University of California at Santa Barbara, ⁵Department of Electrical and Computer Engineering, University of Central Florida

Introduction

Gallium Oxide (Ga₂O₃) is a wide-bandgap material (4.9 eV) with 8 MV/cm breakdown field [1]. Ga₂O₃ devices have higher breakdown voltage, lower on-state resistance and higher switching speed comare to other wide band gap counterparts which makes It a perfect choice for space and defence applications. However, Ga₂O₃ Schottky barrier diodes (SBDs) are susceptible to single event burnout (SEB) as seen in [1-2]. Structural improvements have been made since to improve the radiation hardness of β-Ga₂O₃ SBDs [3]. Improved devices show higher breakdown voltage significantly more SEB tolerance than the previous structure evaluated in [1].

 β -Ga₂O₂ Comparison

Improved structures & SEB tolerance

Fig. 7. Reverse bias I-V curves before and after the Cf-252 stress/irradiation cycles of Fig. 5 (Var. 1) and Fig. 6 (Var. 2). The part failed during the 400 V reverse bias irradiation for both cases.

Radiation response: Am-241

 \Box 5.4 MeV Am-241, LET < 1 MeV cm²/mg, Range > 10 μ m

- □ Same test method as Cf-252
- □ No degradation or damage up to electrical failure limit (in air)

- tunneling leakage.
- □ Field plate SBDs (this work) perform better than no-field plate ones.
- High-k dielectric under field plate provide better field management.
- \Box TiO₂ further improves devices performance than ZrO_2 .

Surface damage SEB damage Bonding wire Bonding spot

Fig. 4. Optical image of (a) pristine β -Ga₂O₃ SBD and (b)-(d) Cf-252 irradiated SBD. The small ring at the top is an artefact of the mask, and does not reflect any changes in the underlying structure. The circular dark spots in (b)-(d) are the solder pad locations. Physical SEB damage (red circles) is clearly evident near the field plates in (b)-(d). Surface damage regions that are not associated with measurable device degradation or failure are also noticeable in (b)-(c).

Radiation response: Cf-252

 \Box Cf-252, LET = 10-45 MeV cm²/mg, Range = 3-10 μ m

□ SBDs were reverse-biased for 30 min without radiation, then 30 min with radiation. The sequence was repeated until the device failed with Cf-252 □ SEB threshold avg. ~400 V (Var. 2 has a slightly higher avg.)

Fig. 8. Current vs. time for Var. 1 (left) and Var. 2 (right) β-Ga₂O₃ SBD for alpha-particle irradiation under reverse biases from 350 V to 475 V. The irradiation begins at 30 min. No significant effects on device response are observed.

Fig. 9. Reverse bias *I-V* curves for a Var. 1 and Var. 2 β-Ga₂O₃ SBD before and after Am-241 alpha particle exposure up to a total fluence of 1.2×10^7 particles/cm². No significant changes are observed.

Fig. 5. Current vs. time for a β -Ga₂O₃ SBD (Var. 1) during Cf-252 irradiation under 200 V to 400 V reverse bias with a 30 V or 20 V increase in magnitude each time. The irradiation begins at 30 minutes. SEB is observed at 400 V.

Fig. 6. Current vs. time for a β -Ga₂O₃ SBD (Var. 2) during Cf-252 irradiation under 200 V to 400 V reverse bias with a 30 V or 20 V increase in magnitude each time. The irradiation begins at 30 minutes. SEB is observed at 400 V.

50

60

Conclusions

- Changes in metallization, field-plate dielectric, and edge-termination structures lead to improved reverse-breakdown characteristics and higher SEB threshold of β -Ga₂O₃ diodes.
- New variants are well resistant to alpha particle irradiation like the previous structure.
- Both process variants investigated in this work show improved SEB response to the devices of [1] for Cf-252 and short-range, heavy-ion irradiation.
- □ SEB damages occurring near the edge of the Schottky barrier contact making it the most vulnerable location of the device under ion irradiation

References

[1] R. M. Cadena *et al.*, *IEEE-TNS*, vol. 70, no. 4 (2023). [2] S. Islam et al., Dev. Res. Conf. (DRC), Santa Barbara, CA, USA, June 26-28, 2023 [3] E. Farzana et al., Apl. Mat., vol. 10, p. 1111041 (2022).