Porous Silicon Flakes on a Flexible Substrate for Real-Time Biosensing using Smartphone Technology
Caitlin Carfano¹, Tengfei Cao², and Sharon M. Weiss³
1 Department of Electrical and Computer Engineering, The George Washington University, Washington, DC
2 Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN
3 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN

Motivation

- **Low Cost Diagnostics:**
 - Cannot rely on expensive lab equipment
 - Must not take long time to get results
 - Especially needed in developing world
 - Smartphones are ubiquitous and can be easily implemented in a point-of-care system

Meeting ASSURED Criteria:
- Affordable
- Sensitive
- Specific
- User-Friendly
- Rapid and Robust
- Equipment Free
- Deliverable to Users

[1] Figure: More than half the deaths in the poorest countries are a result of infectious and parasitic diseases

Porous Silicon as a Biosensor

- Porous Silicon (PSi) Properties:
 - Large internal surface area (>100 m²/cm²)
 - Widely tunable pore size (~1 – 100 nm)
 - Easy to fabricate (electrochemical etching)

Operating Principle:
- Multilayer PSi film selectively reflects certain colors of light
- When pores are partially or completely filled, the reflected color changes

Device Fabrication

1. Attach porous silicon to a flat layer of PDMS; place tape on filter paper and spread PDMS across it
2. Peel tape off the paper and place the porous silicon/PDMS unit to paper/PDMS. Bake at high temperature in oven
3. Place device paper first in solution and observe color change

Sensing with Glucose

- Various glucose concentrations
- Detection Sensitivity (DS): 300 nm/RIU
- Smartphone Sensing (PDMS)

Conclusions

- Demonstrated that PSI can be transferred directly onto flexible PDMS or plastic films without compromising spectral integrity
- Presented new approach for low-cost, easy-to-use biosensor using a combination of PDMS, paper, and hydrophobic barriers with PSI and smartphone
- Demonstrated that using RGB data from a smartphone camera can be used instead of a traditional spectrometer to accurately measure sensing events in PSI

References:

Acknowledgements: This research was supported in part by the NSF VINSE REU grant DMR-1560414 and the ARO grant W911NF-15-1-0176. I gratefully acknowledge Alice Leach for helping in the clean room, Tianjiao Wang for single particle reflectance measurements in Prof. Yaqiong Xu’s laboratory, as well as everybody in the Weiss lab for support.