Measuring Vibrational Energy

AlN Phonon Dispersion

![Graph showing AlN phonon dispersion](image)

A phonon describes the transport of vibrational energy in a material. A phonon dispersion depicts available frequencies in a system.

![Diagram showing Raman spectroscopy](image)

Raman spectroscopy is a light-based, experimental method that can probe certain vibrational modes.

![Diagram showing vibrational energy states](image)

Symmetry determines which frequencies are Raman active, due to changes in polarizability.

![Diagram showing DFT electronic approximation](image)

Density Functional Theory (DFT) can calculate phonon dispersions and Raman activity.

Raman Spectra of AlN & GaN

AlN Raman Spectrum (ONCVPS v0.4, Unit Cell)

![Graph showing AlN Raman spectrum](image)

Simulation results for AlN place A1, E2, and E1 Raman peaks in the correct order, and locate these peaks with reasonable accuracy. Relative intensities, however, are not accurate.

![Graph showing GaN Raman spectrum](image)

GaN Raman Spectrum (ONCVPS v0.4, Unit Cell)

Calculation results for GaN correctly place the E2 Raman peak, but fail to capture the A1 peak at approximately 735 cm⁻¹.

AlN-GaN Superlattice

AlN-GaN Raman Spectrum (ONCVPS v0.4, ASR)

![Graph showing AlN-GaN Raman spectrum](image)

- DFT can accurately calculate phonon frequencies and Raman-active modes.
- Unique modes arise in the superlattice, representing potential interface or hybrid modes.

![Table showing calculated vibrational modes](image)

Increasing the size of this system and improving convergence may yield improved intensity data and the calculation of additional active peaks, which would improve the trustworthiness of calculations.

Acknowledgments

Presented at VINE poster session, August 4, 2021.

Special thanks to the VINSE staff for their support! This work was funded by NSF DMR 1852157.

DFT calculations were performed with QuantumEspresso.
