The Sustainability and Environmental Management Office (SEMO) is a collaborative venture between Vanderbilt Environmental Health and Safety and Vanderbilt University’s Plant Operations. SEMO's mission is to initiate, promote, coordinate, evaluate and encourage environmental management and sustainability initiatives that improve Vanderbilt’s impact on the community and environment.

Plant Operations provides facilities support for all construction, renovation and routine maintenance of University Central space and facilities; housekeeping services for approximately 5.8 million square feet of academic, administrative, residential, and recreational space; grounds care for 330 acres that are a registered arboretum; turf care for athletic fields; and utilities for University Central and the Medical Center.

Campus Planning and Construction (CPC) aims to present a physical environment that meets the programmatic requirements of its customer base while visually expressing the quality to which Vanderbilt University aspires. Functions closely related to the delivery of new facilities are performed by the Facilities Information Services unit within CPC. This group addresses the inventory and management of Vanderbilt’s construction document library, GIS mapping and documentation of all utilities and tracking of floor plans for the Space Inventory and Accounting processes.

The Division of Public Affairs serves as the institution-wide hub for communications, marketing and public policy initiatives. Whether developing unique relationships with and communicating to Vanderbilt's vast array of external and internal constituencies, promoting government and community initiatives or creating a broader, deeper and more complete understanding of Vanderbilt, each and every activity of the division supports the University's academic missions of teaching, research, service and patient care.

Published October 23, 2013
TABLE OF CONTENTS

ACKNOWLEDGEMENTS...1

EXECUTIVE SUMMARY..2

I. BACKGROUND...5
 Vanderbilt University
 Inventory Development
 Greenhouse Gases: Impact and Importance
 Vanderbilt Operations Resulting in Greenhouse Gas Emissions

II. VANDERBILT UNIVERSITY ENVIRONMENTAL COMMITMENT ...8

III. INVENTORY DEVELOPMENT METHODOLOGY...9
 Boundary Definitions
 Operational Boundary
 Spatial Boundary – Academic and Research Areas, Patient Care Areas
 Temporal Boundary
 Greenhouse Gas Calculation Protocol
 Greenhouse Gas Data Collection and Inventory Methodology
 On-Campus Energy Production
 University-Owned Vehicles
 Anesthetic Gases
 Refrigerants
 Electricity Purchases
 Faculty, Staff and Student Commuter Traffic
 Air Travel
 Waste Management
 Uncertainties Associated with Greenhouse Gas Inventory Calculations

IV. ACADEMIC AND RESEARCH AREA GREENHOUSE GAS EMISSIONS...16
 Results Summary
 Scope 1: EPA-Required Emissions Sources
 Coal and Natural Gas Use at the Power Plant
 Natural Gas Use in Individual Buildings
 Scope 1: Other Direct Emissions Sources
 Diesel-Powered Generators
 Refrigerant Releases
 University-Owned Vehicles
 Anesthetic Gas Use
 Scope 2: Purchased Electricity Emissions
 Scope 3: Indirect Emissions Sources
 Commuter Travel
 Air Travel
 Waste Management
V. PATIENT CARE AREA GREENHOUSE GAS EMISSIONS

Results Summary
Scope 1: EPA-Required Emissions Sources
 Coal and Natural Gas Use at the Power Plant
 Natural Gas Use in Individual Buildings
Scope 1: Other Direct Emissions Sources
 Diesel-Powered Generators
 Refrigerant Releases
 University-Owned Vehicles
 Anesthetic Gas Use
Scope 2: Purchased Electricity Emissions
Scope 3: Indirect Emissions Sources
 Commuter Travel
 Waste Management

VI. INVENTORY SUMMARY

Vanderbilt University Inventory Summary
Analysis and Interpretation of 2005-2012 Trending Results
Interpreting Vanderbilt’s Results Compared to Other Universities
Future Plans

VII. APPENDIX A: 2005-2012 Trending Data and Calculations

VIII. APPENDIX B: 2012 Calendar Year Data and Calculations
ACKNOWLEDGEMENTS

The authors gratefully acknowledge the following individuals for providing data to SEMO and sharing their insight on operations that produce greenhouse gas emissions:

David Banks, VUMC Parking and Transportation Services; Roger Bess, Director of Utilities, Plant Operations; James "Darren" Bevill, Campus Energy Manager, Plant Operations; Huey Brantley, Director, Facilities Information Services; Roland Brunhoeber, Assistant Director, VUMC Plant Services; Melanie Byers, Senior Safety Officer, Environmental Health and Safety; Larry Cox, Manager, Chilled Water Distribution, Plant Operations; Michael Gable, Professional Engineer, VUMC Space and Facilities Planning; Lance Hale, Manager, Office of Traffic and Parking; Elizabeth Hiett, Coordinator of Inventory Management, VUMC Plant Services; Susan Johnson, Assistant Director, Environmental Health and Safety; Debbie Kunik, Budget Analyst, Plant Operations; Mitchell Lampley, Director of Engineering, Plant Operations; David Manning, Grounds Maintenance, Plant Operations; Renna McKnight, Contract Manager, VUMC Medical Supply Sourcing; Ben Edwards, Assistant Director, Environmental Health and Safety; Karen Montefiori, Sourcing Analyst, Information Technology Services; Missy Morrison, Senior Accountant, VU Police Department; Judson Newbern, Deputy Vice Chancellor for Facilities and Environmental Affairs; Michael O’Neal, Manager, VUMC Pharmacy Procurement; Chuck Nicholas, Director, Procurement Services; Bill Page, Manager, Storeroom, Plant Operations; Mark Petty, Assistant Vice Chancellor for Plant Operations; Jessie Pirtle, Material Coordinator, Division of Animal Care; Benji Rust, Vanderbilt Real Estate; Travis Sawyer, Manager, Human Resources; Marisa Scott, Safety Officer, Environmental Health and Safety; Gary Streaty, Director, VUMC Parking and Transportation Services; Tim Simpson, Manager, Special Equipment Repair, VUMC Plant Services; Mark Walker, Manager, Heating and Air Conditioning Repair Shop, VUMC Plant Services; Richard Warf, Senior Accountant, Plant Operations; Kevin Warren, Assistant Director, Environmental Health and Safety; Robert West, Vehicle Fleet Manager, Plant Operations; Robert Wheaton, Executive Director, Environmental Health and Safety; Joel Wilson, Work Management Manager, VUMC Plant Services; and Jeff Youngblood, Network Technician, Plant Operations.

The authors gratefully acknowledge the following individuals for assisting SEMO with reviewing this report:

James Clarke, Professor, Civil and Environmental Engineering; Chair, Environmental Advisory Committee; Jerry Fife, Vice Chancellor for Administration; Judson Newbern, Deputy Vice Chancellor for Facilities and Environmental Affairs; Mark Petty, Assistant Vice Chancellor for Plant Operations; and Robert Wheaton, Executive Director, Environmental Health and Safety.

Cover photo provided by Robert Wheaton.
EXECUTIVE SUMMARY

This Greenhouse Gas (GHG) emissions inventory is intended to portray Vanderbilt's current carbon footprint as accurately as possible and to provide trending information to show progress in GHG emissions reductions from 2005-2012. This GHG inventory was developed by Vanderbilt’s Sustainability and Environmental Management Office (SEMO).

This report, a supplement to previous reports¹, establishes Vanderbilt’s GHG emissions for calendar year 2012 so that the Vanderbilt community can better understand its own unique impact on the environment and determine the most effective improvement strategies to implement in the future. Trending data for 2005 through 2012 is provided in Appendix A.

Findings

Between 2005 and 2012, Vanderbilt University’s GHG emissions have decreased by:

1. 13.8% overall
2. 26% per person on campus
3. 27% per 1,000 gross square feet
4. 34% per 1,000 research dollars awarded
5. 25% per student
6. 26% per inpatient day
7. 52% per ambulatory day

¹ Vanderbilt University’s Inventory of Greenhouse Gas Emissions 2005-2012 reports are available at http://www.vanderbilt.edu/sustainvu/.
VU’s total GHG emissions for calendar year 2012 was 410,006 MTCO₂E, down 13.8 percent from 2005 and 18.5 percent from the all-time high reached in 2008².

Vanderbilt University’s EPA-Required GHG emissions for calendar year 2012 was 147,536 MCO₂E, as reported to the EPA on March 20, 2013.

As of 2012, GHG emissions from Academic and Research Areas have decreased by 15.1 percent since 2005, and GHG emissions from Patient Care Areas have decreased by 11.7 percent since 2005³.

94 percent of GHG emissions in 2012 came from purchased electricity, coal and natural gas use at the campus co-generation power plant and faculty and staff commuting⁴.

Future Plans

This inventory provides campus stakeholders with a consistent means of comparing annual GHG emissions and sufficiently detailed information to make informed decisions to determine reduction strategies. Annual emissions inventories will be conducted in the future to measure progress, which will continue to be made publicly available on the SustainVU website⁵.

In Fall 2013, Vanderbilt University began the conversion of its co-generation power plant from coal and gas fuel to all-natural gas. This will continue to meet the power needs of the University and Medical Center, but in a more environmentally sustainable way. This conversion will increase operational efficiency, reduce greenhouse gas emissions, air pollutant emissions and noise pollution, and eliminate associated fuel use and emissions from trucking coal to the power plant⁶.

² Additional information about the University’s total GHG emissions for 2005-2012 can be found in Table B.1 in the appendices.
³ Additional information about GHG emissions from Academic and Research Areas and Patient Care Areas can be found in Tables A.1, A.2 and A.3 in the appendices.
⁴ Additional information about the sources of GHG emissions can be found in Figure B.1 in the appendices.
⁵ www.vanderbilt.edu/sustainvu
I. BACKGROUND

Vanderbilt University

Vanderbilt University, founded in 1873, is a private research higher education institution offering undergraduate, graduate and professional degrees to over 12,700 full and part-time students. Comprised of 10 schools and a world-class medical center, Vanderbilt University is consistently ranked as one of the country’s top 20 universities with several programs ranking in the top 10. As the largest private employer in Middle Tennessee and the second largest private employer in the state, Vanderbilt University currently has more than 3,500 full-time faculty and a staff of over 20,000. The core campus, located near downtown Nashville, Tennessee, spans approximately 330 acres and contains 230 buildings. More than 200 tree species exist on Vanderbilt’s grounds, leading to the school’s recognition as an arboretum since 1988.

Inventory Development

Vanderbilt emits Greenhouse Gases (GHG) through its daily operations, such as electricity and steam production at the on-campus; co-generation power plant; electricity purchased from Nashville Electric Service (NES); University-owned vehicle fuel use; refrigerant releases; anesthetic gas use; fuel used in vehicles owned by Vanderbilt University; faculty and staff commuting to work; air travel paid for by the University; and disposal of waste generated by Vanderbilt. VU has issued previous reports in 2009, quantifying GHG emissions for 2005-2007, in 2010 for years 2005-2009, and in 2011 and 2012 for years 2010 and 2011, respectively. Trending data summaries for 2005 to 2012 are provided in Appendix A.

In October 2009, the Environmental Protection Agency (EPA) issued the Mandatory Greenhouse Gas Reporting Rule [40 CFR Part 98], requiring annual reporting of GHG emissions from large sources in the United States that emit more than 25,000 metric tons of carbon dioxide equivalent (MTCO$_2$E) per year. Vanderbilt is subject to this reporting rule because of the emissions produced from the current use of coal and natural gas at the on-campus, co-generation power plant for the production of steam and electricity for campus. Under the GHG reporting rule, the scope and emissions factors of stationary sources vary from those utilized in Vanderbilt’s initial baseline GHG inventory. In order to create a single, consistent methodology for calculating and reporting GHG emissions for the University, emissions for Vanderbilt, including those years prior to 2009, were calculated utilizing the EPA’s scope and emissions factors for relevant stationary sources. For calendar year 2012, Vanderbilt University emissions from EPA-required sources amounted to 147,536 MTCO$_2$E, which was reported to the EPA on March 20, 2013. Emissions from all sources not covered by the

3 VU facilities data is available online at cpc-fis.vanderbilt.edu/pdf/facilitiesreportbook.pdf
5 http://www.epa.gov/ghgreporting/
Greenhouse Gases: Impact and Importance

A carbon footprint is a standard that people and organizations use to quantify the impact they have on the environment, particularly as their behaviors relate to climate change concerns. GHGs, once released, trap heat in the atmosphere, acting like a gas blanket. As the concentrations of these gases increase, the earth’s temperature could potentially climb higher than previous levels; and wind, storm and precipitation patterns could shift and become more extreme. These weather pattern shifts result in the migration of plant and animal species to new locales as well as increased frequency of catastrophic natural disasters.

The six GHGs emitted into the atmosphere that comprise the majority of the carbon footprint are: carbon dioxide (CO2); methane (CH4); nitrous oxide (N2O); hydrofluorocarbons (HFCs); perfluorocarbons (PFCs); and sulfur hexafluoride (SF6). Once the amount of emissions of each gas is determined, it is converted to a standard unit of measure, or carbon dioxide equivalent (CO2E). The sum of all CO2E emitted by that person or organization is the carbon footprint, usually reported in metric tons as MTCO2E.

Vanderbilt Operations Resulting in Greenhouse Gas Emissions

Vanderbilt’s on-campus power plant produces 20 percent of the electricity, all of the steam and 40 percent of the chilled water consumed by the Vanderbilt community. These utilities are produced by a co-generation combined heat and power (CHP) plant. This plant currently uses two fuels, coal and natural gas, to produce electricity, steam heat and chilled water. This type of power plant is highly efficient because of the flexibility of the fuel system, the variety of utilities produced and the proximity of the utility production to the utility user. Since a portion of electricity produced at power plants hundreds of miles away is actually lost during the transmission process through the electrical lines (line losses), VU can use much less coal or natural gas than Tennessee Valley Authority (TVA) would require to deliver the same.

amount of electricity to campus. The remaining 80 percent needed to power Vanderbilt’s campus is purchased from TVA through NES. This mix of on-campus generation and purchased electricity also results in uniqueness within Vanderbilt’s carbon footprint.

In Fall 2013, Vanderbilt University began the conversion of its co-generation power plant from coal and gas fuel to all-natural gas. This will continue to meet the power needs of the University and Medical Center, but in a more environmentally sustainable way. This conversion will increase operational efficiency, reduce greenhouse gas emissions, air pollutant emissions and noise pollution, and eliminate associated fuel use and emissions from trucking coal to the power plant.\footnote{More information regarding the VU Power Plant Conversion can be found at \url{http://www.vanderbilt.edu/sustainvu/2013/04/vu-power-plant-to-convert-to-all-natural-gas/}.}

Rate of Temperature Change in the U.S.

The figure to the left shows how annual average air temperatures have changed in different parts of the United States since the early 20th century (since 1901 for the contiguous 48 states, 1905 for Hawaii, and 1918 for Alaska).

Some parts of the United States have experienced more warming than others. The North, the West, and Alaska have seen temperatures increase the most, while some parts of the Southeast have experienced little change.

\url{http://www.epa.gov/climatechange/science/indicators/weather-climate/temperature.html}
II. VANDERBILT UNIVERSITY ENVIRONMENTAL COMMITMENT

This Environmental Commitment Statement is a collaborative product of many stakeholders and campus representatives and is meant to succinctly and uniquely reflect Vanderbilt’s culture and values. The Vanderbilt University Environmental Commitment Statement presented here is also the cornerstone of our Environmental Management System (EMS), which includes the VU GHG emissions inventory.

Environmental Commitment Statement

Vanderbilt University is a local and global community leader committed to environmental stewardship, protecting natural resources, and enhancing quality of life while maintaining academic, medical, social, and economic productivity. Through proactive education, research, and outreach, we strive to:

- Develop and transfer knowledge, increase awareness, and promote lifelong learning about sustainability best practices for the benefit of stakeholders who comprise the Vanderbilt community (students, patients, faculty, staff, alumni, and visitors), as well as the broader Nashville, state, national, and global communities;

- Achieve the highest standards of sustainability through a process of environmental responsibility and accountability at every level of University activity; and

- Consistently implement, monitor, evaluate, and improve our process.

http://www.vanderbilt.edu/sustainvu/who-we-are/environmental-commitment-statement/
III. INVENTORY DEVELOPMENT METHODOLOGY

Boundary Definitions

Prior to conducting the first Vanderbilt GHG inventory in 2009, the operational, spatial and temporal boundaries of the inventory were firmly defined. Furthermore, a GHG calculation protocol was established prior to gathering the data for this GHG inventory.

Operational Boundary

Activities at Vanderbilt University that produce GHG emissions include those outlined by the EPA’s Mandatory GHG Reporting Rule [40 CFR Part 98]8, as well as The American College & University Presidents Climate Commitment (ACUPCC) Implementation Guide (2009)9. The boundaries established by the ACUPCC Implementation Guide rely heavily on the methodology established by the World Resources Institute Greenhouse Gas Protocol10. As noted by the World Resources Institute (WRI), “identification of operational boundaries helps institutions to categorize their sources of emissions, providing accountability and the prevention of ‘double counting’.”

The EPA defines GHG emissions as required under the Mandatory GHG Reporting Rule as follows:

- EPA-Required Stationary Sources: Scope 1 – Direct Sources. These are emissions produced by stationary sources that are under direct control of the institution. Vanderbilt’s EPA-required stationary sources include coal and natural gas consumption at the on-campus power plant and consumption of natural gas within individual buildings at Vanderbilt.

Throughout this report, the WRI definition of Scope 1 sources will be utilized to capture all other direct source emissions not included in the EPA-required stationary sources definition:

- Other Scope 1: Non-EPA Direct Sources. The remaining Scope 1 emissions that are not designated as stationary sources by the EPA are emissions produced by activities that are under direct control of the institution. Vanderbilt’s other Scope 1 emissions include fuel consumption by University-owned vehicles, releases of refrigerants and anesthetic gases and fuel consumed by Vanderbilt-owned emergency generators.

The WRI Greenhouse Gas Protocol11 categorizes GHGs into Scopes 2 and 3 as follows:

- Scope 2: Indirect Emissions from Electricity Purchases. These are emissions associated with the generation of electricity that is purchased by Vanderbilt. Scope 2 emissions physically occur at power-generation facilities owned by Vanderbilt’s electricity supplier and not at the Vanderbilt campus itself. Vanderbilt purchases 80 percent of the electricity needed to supply campus operations.

- Scope 3: Indirect Emissions by Individuals at Vanderbilt. These are emissions that result from activities by individuals in the Vanderbilt community but are not under the direct control of the University. Scope 3 emissions

8 http://www.epa.gov/ghgreporting/
9 www2.presidentsclimatecommitment.org/pdf/ACUPCC_IG_Final.pdf
11 http://www.ghgprotocol.org/
include fuel use by commuters (faculty, staff and student commuters), fuel use from air travel and off-site waste disposal.

GHG emissions associated with the production and delivery of goods and services to Vanderbilt (i.e. "upstream" emissions) were not included in this inventory.

Spatial Boundary – Academic Research Areas, Patient Care Areas

Vanderbilt University is a diverse institution, providing regional health care while simultaneously pursuing robust academic endeavors. As such, this report provides a subtotal of GHG emissions associated with Academic Research Areas (ARAs), which are traditional academic university endeavors, and a separate subtotal for emissions associated with Patient Care activities. The contrast in the activities in these two areas is worth noting: Patient Care Areas (PCAs) provide medical care on a continuous basis, while activities in ARAs are associated with an academic calendar. ARAs include academic and administrative buildings, residence halls, athletics facilities, parking garages, common space/multi-purpose areas and laboratory research space, while PCAs include hospitals, clinics and patient and visitor parking garages.

The typical definition of Vanderbilt University’s “core campus” is the University property that is bounded by Blakemore Avenue to the south, West End Avenue to the northwest and 21st Avenue South to the east. The Peabody Campus at Vanderbilt is also part of the core 330 acres of Vanderbilt. The Peabody Campus is bounded by 21st Avenue South to the west, Edgehill Avenue to the north, 18th Avenue South to the east and Capers Avenue to the south. These two areas encompass the majority of the academic, residential, research and patient care buildings associated with Vanderbilt, and the buildings located within this core 330 acres are serviced by Vanderbilt’s on-campus power plant. The core VU campus contains over 230 buildings, encompassing over 18 million gross square feet of space.

Buildings that are classified as Patient Care buildings include Vanderbilt University Hospital, The Vanderbilt Clinic, Vanderbilt Children’s Hospital & Doctor’s Office Tower, Psychiatric Hospital at Vanderbilt, Vanderbilt-Ingram Cancer Center, Vanderbilt Eye Center, Free Electron Laser Building, Medical Center East (North Tower), Zerfoss Health Center, Oxford House, Dayani Center, Central Garage, East Garage, South Garage, Children’s Way Garage, Medical Arts Building, Medical Center East II (South Tower) and 35 percent of Medical Center North. All other buildings on the “core” 330 acre campus are considered ARAs.
Off-site buildings, such as medical clinics located elsewhere in Tennessee, were not included in this inventory. A few buildings located within the core 330 acres of the Vanderbilt campus (approximately 3 million gross square feet of space) are not under the direct operational control of the University and do not receive utility services from Vanderbilt; therefore, these buildings were not included in this GHG inventory. Such buildings include the Veteran’s Administration Hospital, Stallworth Rehabilitation Hospital, the 2525 Building located on West End Avenue, the Marriott Hotel & parking garage on West End Avenue and the Village at Vanderbilt Apartments and Townhomes.

Temporal Boundary
The purpose of this inventory is to establish a history of Vanderbilt’s annual GHG emissions that can serve as a guide for future GHG-emitting reductions. Using the total GHG emissions from a single fiscal or calendar year as a focal point would not accurately represent a ‘typical’ year of activity at Vanderbilt University due to annual fluctuations in emissions caused by commissioning new buildings, changes in faculty/staff/student populations and seasonal/climatic variations from year to year - all of which have a direct bearing on Vanderbilt’s GHG emissions for a particular year. In an effort to capture these “peaks & valleys” in activities at Vanderbilt, this eight-year inventory establishes the annual GHG emissions created by Vanderbilt during the 2005 through 2012 calendar years.

Greenhouse Gas Data Collection and Inventory Methodology

On-Campus Energy Production
Vanderbilt’s sources of GHG emissions that are under direct control of the University include the consumption of coal and natural gas at the on-campus, co-generation power plant, natural gas-fired boilers and heaters located in various Vanderbilt buildings, and diesel fuel consumed in Vanderbilt’s emergency generators. Annual consumption of coal and natural gas at the on-campus, co-generation power plant and natural gas by individual buildings was provided by Plant Operations and input into formulas provided by the EPA for calculation of annual GHG emissions. Annual consumption of diesel fuel by individual emergency generators was also provided by Plant Operations and input into the Campus Carbon Calculator to compute annual GHG emissions.

University-Owned Vehicles
Vanderbilt University owns over 300 vehicles. Some departments at Vanderbilt purchase their own fuel in bulk and track dispensing of that fuel (i.e., Plant Operations), while others purchase their fuel from local retail stations. Departments
that track their fuel use provide their annual fuel usage, and that data is directly input into the Campus Carbon Calculator. Fuel dispensed to Vanderbilt shuttle buses and vans is recorded monthly by Vanderbilt University Medical Center (VUMC) Parking and Transportation Services and is included in this inventory.

Most users of University-owned vehicles at Vanderbilt purchase their fuel at local retail stations using a VU Procurement Card, and the volume of fuel purchased is not recorded by the vehicle manager. For this portion of University-owned vehicles, two assumptions were made in order to estimate the approximate annual fuel use for these vehicles: (1) a University-owned vehicle averages 3,000 miles a year (based on the vehicle-miles logged by the vehicle manager for Information Technology Services), and (2) a University-owned vehicle gets 24 miles per gallon. From this, the gallons of fuel consumed by these vehicles was calculated and input into the Campus Carbon Calculator.

Annual consumption of fuel by Vanderbilt’s LifeFlight helicopters is reported by VUMC Plant Services. GHG emissions associated with LifeFlight’s use of Jet-A fuel were calculated using an emission factor from WRI’s Greenhouse Gas Protocol12.

Anesthetic Gases

Vanderbilt uses anesthetic gases in both PCAs and in animal care areas and research laboratories; however, different types are used for animals and humans. Purchase records for anesthetic gas were provided by VUMC’s Department of Anesthesiology and Vanderbilt’s Division of Animal Care. The Campus Carbon Calculator does not provide Global Warming Potentials (GWP) for all anesthetic gases, since most universities use little to no anesthetic gas. Vanderbilt’s GHG emissions from anesthetic gas use were calculated based on GWPs provided by the EPA’s *Mandatory GHG Reporting Rule*13.

Refrigerants

Universities track releases of refrigerants to the atmosphere as required by the EPA. VU Plant Operations and VUMC Plant Services keep records of refrigerant releases from chillers, air conditioning units, walk-in coolers and freezers, and various types of appliances. Pounds of refrigerants released were provided and directly input into the Campus Carbon Calculator. Pounds of refrigerants released has dropped since 2011, when VU Plant Operations and VUMC Plant Services hired dedicated chilled water technicians to perform robust preventative maintenance on systems. This maintenance minimizes downtime and reduces the costs associated with refrigerant replacement and loss of chilled water for critical equipment.

Electricity Purchases

The University’s co-generation power plant supplies Vanderbilt with 100 percent of the steam needed for heating buildings and 40 percent of the chilled water needed for cooling buildings. Excess heat from steam generation is used to create electricity, satisfying 20 percent of Vanderbilt’s annual electricity demand. The remaining 80 percent of Vanderbilt’s electricity demand is obtained through electricity purchased from TVA (through NES). In 2012, 41 percent

12 www.ghgprotocol.org
13 Suppliers of anesthetic gases are required to report their sales/shipments under a separate portion of the EPA’s *Mandatory Reporting of Greenhouse Gases; Final Rule* [40 CFR Part 98, Subpart C].
of TVA’s electricity came from coal-fired power plants; 38 percent came from nuclear power; 9 percent came from hydroelectric dams; 12 percent came from natural gas-fired power plants; and <1 percent came from other renewable sources. Figure 3.1 below presents TVA’s sources of power generation.

Vanderbilt University purchases electricity from NES, the local distributor of power generated by TVA. Monthly consumption of electricity by building was provided by VU Plant Operations. Aggregate annual consumption of electricity in PCA buildings and in ARA buildings were entered into the Campus Carbon Calculator. The specific methods of electricity generation used by TVA were input to the Campus Carbon Calculator.

Faculty, Staff, and Student Commuter Traffic
Commuter traffic reflects the fuel used by faculty, staff and students during their regular travels to and from Vanderbilt. Table 3.1 below shows assumed travel patterns based on commuter data.

<table>
<thead>
<tr>
<th>Population</th>
<th>Percent commuting in a single-occupancy vehicle</th>
<th>Percent commuting in a car/vanpool</th>
<th>Percent commuting via bus or train</th>
<th>Other forms of commuting (walk/bike)</th>
<th>Days per year commuting to campus</th>
<th>Average commuter distance (via automobile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>86%</td>
<td>6%</td>
<td>7%</td>
<td>1%</td>
<td>200</td>
<td>48</td>
</tr>
<tr>
<td>Staff</td>
<td>86%</td>
<td>6%</td>
<td>7%</td>
<td>1%</td>
<td>250</td>
<td>48</td>
</tr>
<tr>
<td>Student</td>
<td>15%</td>
<td>5%</td>
<td>2%</td>
<td>78%</td>
<td>200</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 3.1. Assumptions for Faculty, Staff and Student Commuter Travel, Calendar Year 2012.

16 Assumptions based on 2012 data provided by VUMC Parking and Transportation Services and VU Traffic and Parking.
It was determined that faculty and staff in ARAs have an average commuting distance of 24 miles (one-way) and students who do not live on campus have an average commuting distance of 5 miles (one-way). Commuter distance, commuter patterns and faculty/staff/student populations were input to the Campus Carbon Calculator to determine Vanderbilt’s commuting GHG emissions. The University employee population associated with PCAs was provided by Vanderbilt’s Human Resources Department. Based on building assignment, separate commuter GHG emission amounts were calculated for ARAs and PCAs. All students and all faculty members (including School of Medicine faculty and School of Nursing faculty) were classified as commuters in the ARA category for the purpose of this report. Medical Center employees assigned to off-campus locations were not included in the commuter traffic calculations.

Air Travel

Airline tickets purchased through Vanderbilt’s travel agency for University-sponsored travel are tracked and reported to Vanderbilt’s Procurement and Disbursements Department. Air travel records for the 2012 calendar year include passenger-miles, which were input to the Campus Carbon Calculator. All air travel was assumed to be associated with Academic and Research activities for the purposes of this report. Airline tickets purchased by individual Vanderbilt employees using a Procurement Card or personal credit card could not be captured at this time and are not included in this inventory.

Waste Management

Data related to the amount of waste generated annually by Vanderbilt was provided by VU’s waste vendor and by Vanderbilt Environmental Health and Safety (VEHS). Waste generated by Vanderbilt is disposed of in one of four ways: (1) waste is landfilled, with landfill gas being converted to electricity; (2) waste is landfilled, with landfill gas being combusted to the atmosphere; (3) waste is incinerated; or (4) waste is autoclaved and then landfilled. Each of these disposal methods has a separate impact on Vanderbilt’s GHG emissions. Waste generated by Vanderbilt is disposed off-site by licensed waste management companies.

The volume of solid waste sent to the landfill from VUMC and from the University was reported separately by the disposal vendor, Waste Management. Solid waste removed from Vanderbilt is disposed of at a

17 Average commuting distance established by VUMC Parking and Transportation Services and VU Human Resources.
Waste Management landfill in Camden, Tennessee. According to Waste Management, 81.6 percent of landfill gas from this landfill is used to generate electricity, and the remaining 18.4 percent is "flared" to the atmosphere. Therefore, 81.6 percent of Vanderbilt's solid waste volume is multiplied by a greenhouse gas emissions factor that is different from the emissions factor developed for flared landfill gas. Based on this information, separate solid waste amounts were input to the Campus Carbon Calculator categories for landfill gas-to-electricity and landfill gas-to-flare. An input category for incinerated waste is provided in the Campus Carbon Calculator. Records for VU’s incinerated waste are kept by VEHS.

Medical waste that is not autoclaved on-site is shipped to an external, vendor-operated autoclave facility. There is no input category for autoclaved waste in the Campus Carbon Calculator, nor is there a standard emissions number provided in WRI's Greenhouse Gas Protocol18. Using information from SteriCycle19 and waste industry journals20, an estimate as to how much natural gas is needed to autoclave one ton of medical waste was created. The GHG emissions associated with autoclaving Vanderbilt's medical waste at an off-site location was then calculated using the GHG emissions factor for natural gas use provided by the Campus Carbon Calculator.

Uncertainties Associated with Greenhouse Gas Inventory Calculations

As noted by the WRI Greenhouse Gas Protocol21, two types of uncertainties are associated with GHG inventories: scientific uncertainty and estimation uncertainty. Scientific uncertainty occurs when the science of an actual emission is not sufficiently understood. Estimation uncertainty occurs any time GHG emissions are quantified. Thus all emission estimates are associated with estimation uncertainty. Furthermore, the WRI notes that uncertainty exists when using a mathematical model such as a GHG calculator. Model uncertainty is due to the uncertainty associated with the mathematical equations (i.e. models) used to characterize the relationships between various parameters and emission processes. The WRI notes that analyzing and quantifying these uncertainties is likely beyond the scope of most institutions when compiling a GHG inventory.

In an effort to balance the inherent uncertainties in this inventory with the need for transparency and comprehensiveness, the GHG inventory results for academic and research areas and patient care areas are presented in Sections IV and V as generated from the EPA emissions calculator and the Clean Air-Cool Planet Campus Calculator. For purposes of ‘readability,’ many of the emission and conversion factors listed in tables in this report and its appendices have been rounded. However, calculations completed to determine emissions utilized full emission and conversion factors.

18 www.ghgprotocol.org
19 SEMO communication with SteriCycle representatives John Nicklin, Greg Burkett, Marty Desper, and Dan Sullivan.
IV. ACADEMIC AND RESEARCH AREA GREENHOUSE GAS EMISSIONS

Results Summary

Academic and Research Areas at VU encompass typical university activities such as teaching, research, administration, student activities, student housing, dining and athletic facilities. Table 4.1 illustrates annual GHG emissions from ARAs for calendar years 2005 through 2012 and demonstrates that GHG emissions from ARAs have dropped by over seven percent in the past year. Figure 4.1 shows that GHG emissions from ARAs have dropped by over 19 percent since the all-time high in 2008.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>GHG Emissions from EPA-Required Sources(^\text{22}) (MTCO(_2)E)</th>
<th>Other Scope 1 Emissions(^\text{23}) (MTCO(_2)E)</th>
<th>Scope 2 Emissions (MTCO(_2)E)</th>
<th>Scope 3 Emissions (MTCO(_2)E)</th>
<th>Total GHGs Emitted from ARAs (MTCO(_2)E)</th>
<th>Percent Decrease in GHGs Emitted from Previous Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>99,554</td>
<td>2,446</td>
<td>145,173</td>
<td>49,291</td>
<td>296,465</td>
<td>-</td>
</tr>
<tr>
<td>2006</td>
<td>95,045</td>
<td>2,848</td>
<td>145,382</td>
<td>52,550</td>
<td>295,825</td>
<td>0.22%</td>
</tr>
<tr>
<td>2007</td>
<td>107,815</td>
<td>2,838</td>
<td>142,045</td>
<td>55,905</td>
<td>308,604</td>
<td>-4.32%</td>
</tr>
<tr>
<td>2008</td>
<td>108,255</td>
<td>2,598</td>
<td>149,266</td>
<td>53,222</td>
<td>313,341</td>
<td>-1.53%</td>
</tr>
<tr>
<td>2009</td>
<td>116,192</td>
<td>2,455</td>
<td>117,359</td>
<td>52,336</td>
<td>288,343</td>
<td>7.98%</td>
</tr>
<tr>
<td>2010</td>
<td>103,781</td>
<td>3,091</td>
<td>119,507</td>
<td>58,127</td>
<td>284,506</td>
<td>1.3%</td>
</tr>
<tr>
<td>2011</td>
<td>98,201</td>
<td>2,379</td>
<td>118,077</td>
<td>53,573</td>
<td>272,229</td>
<td>4.3%</td>
</tr>
<tr>
<td>2012</td>
<td>95,898</td>
<td>2,381</td>
<td>100,894</td>
<td>52,496</td>
<td>251,669</td>
<td>7.6%</td>
</tr>
</tbody>
</table>

Table 4.1. GHG Emissions from Academic and Research Areas by Type, Calendar Years 2005-2012.

Figure 4.1. GHG Emissions from Academic and Research Areas, Calendar Years 2005-2012.

\(^{22}\) EPA-required sources includes coal-fired boilers, natural gas-fired boilers and natural gas-fired turbines.

\(^{23}\) Other Scope 1 Emissions includes anesthetic gas use, emergency generators, fleet vehicles and refrigerant releases.
As demonstrated in Figure 4.2 below, major contributors to the emissions from ARAs include purchased electricity (40 percent), coal use at the power plant (22 percent), faculty and staff commuting (18 percent) and natural gas use at the power plant (15 percent).

Figure 4.2. GHG Emissions Sources from Academic and Research Areas, Calendar Year 2012.

Figure 4.3 illustrates the contribution from direct emissions (Scope 1), emissions from purchased electricity (Scope 2) and indirect emissions (Scope 3) to the overall GHG emissions for Vanderbilt’s Academic and Research activities. Vanderbilt University ARAs were designated according to the criteria outlined in the Methodology section of the report. For ARA populations for 2012, please reference Table A.4 in the appendices.

Figure 4.3. Academic and Research Areas Emissions by Scope, Calendar Year 2012.
Scope 1: EPA-Required Emissions Sources

Individual building monthly steam and electricity usage for calendar year 2012 revealed that approximately 65 percent of the steam and electricity consumed by Vanderbilt was consumed by ARA buildings. Therefore, 65 percent of the GHG emissions associated with the power plant were attributed to ARAs. In 2012, GHG emissions from EPA-required emissions sources for ARAs amounted to 95,898 MTCO\textsubscript{2}E as shown in Table 4.2.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Coal Use: Power Plant (MTCO\textsubscript{2}E)</th>
<th>Natural Gas Use: Power Plant (MTCO\textsubscript{2}E)</th>
<th>Natural Gas Use: Boilers in Individual Buildings (MTCO\textsubscript{2}E)</th>
<th>Total VU GHG Emissions from EPA-Required Sources24 (MTCO\textsubscript{2}E)</th>
<th>GHG Emissions from EPA-Required Sources in ARAs (65 percent of previous column) (MTCO\textsubscript{2}E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>96,478</td>
<td>51,695</td>
<td>4,988</td>
<td>153,161</td>
<td>99,554</td>
</tr>
<tr>
<td>2006</td>
<td>99,582</td>
<td>38,485</td>
<td>8,155</td>
<td>146,222</td>
<td>95,045</td>
</tr>
<tr>
<td>2007</td>
<td>111,344</td>
<td>48,258</td>
<td>6,268</td>
<td>165,869</td>
<td>107,815</td>
</tr>
<tr>
<td>2008</td>
<td>102,172</td>
<td>51,358</td>
<td>13,017</td>
<td>166,547</td>
<td>108,255</td>
</tr>
<tr>
<td>2009</td>
<td>105,956</td>
<td>64,096</td>
<td>8,705</td>
<td>178,758</td>
<td>116,192</td>
</tr>
<tr>
<td>2010</td>
<td>92,090</td>
<td>62,835</td>
<td>4,738</td>
<td>159,663</td>
<td>103,781</td>
</tr>
<tr>
<td>2011</td>
<td>87,022</td>
<td>58,405</td>
<td>5,651</td>
<td>151,078</td>
<td>98,201</td>
</tr>
<tr>
<td>2012</td>
<td>85,968</td>
<td>56,798</td>
<td>4,770</td>
<td>147,536</td>
<td>95,898</td>
</tr>
</tbody>
</table>

Table 4.2 Academic and Research Areas GHG Emissions from EPA-Required Stationary Sources, Calendar Years 2005-2012.

Coal and Natural Gas Use at the Power Plant

The burning of coal and natural gas at the on-campus power plant releases carbon dioxide, nitrous oxide and methane. The inventory results illustrate that approximately 65 percent of the overall 85,968 MTCO\textsubscript{2}E, or 55,879 MTCO\textsubscript{2}E, are produced from coal use at the power plant for ARAs. This equates to 22 percent of the overall 2012 ARAs emissions. Additionally, 65 percent of the 56,798 MTCO\textsubscript{2}E resulting from natural gas use, or 36,918 MTCO\textsubscript{2}E, equates to 15 percent of the overall ARAs emissions, as shown in Table B.1 of the appendices.

Green Lights Program Hits the “On” Switch

New computer screens installed in first-year residence hall lobbies display real-time energy usage for each building and tell the viewer whether or not the building is meeting its pre-determined energy saving goal. The “Green Lights” program was funded by a winning 2012-2013 Green Fund student proposal.

The backbone of the Green Lights program is EnergyVU, a new online energy dashboard for all campus buildings at VU. Users can compare the energy usage of a building over time or to a set of other buildings.

For more information, visit http://energyvu.vanderbilt.edu/.

Natural Gas Use in Individual Buildings

Several buildings on campus use natural gas directly from Vanderbilt’s natural gas supplier. The consumption of natural gas within individual buildings in ARAs accounts for 3,101 MTCO\textsubscript{2}E of 2012 emissions, as shown in Table B.1 of the appendices.

24 Emission factors taken from the EPA’s Mandatory Reporting of Greenhouse Gases; Final Rule [40 CFR Part 98, Subpart C].
Scope 1: Other Direct Emission Sources

Vanderbilt’s direct GHG emissions sources that are not required to be reported to the EPA are shown in Table 4.3 below. Although 2012 saw a slight rise in GHG emissions from other direct emission sources, emissions from fleet vehicles continued to drop and overall, all emission sources continue to trend downward. See Tables B.2, B.3, B.4 and B.5 in the appendices for more details.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Diesel-powered Emergency Generators (MTCO2E)</th>
<th>Refrigerant Releases (MTCO2E)</th>
<th>VU Fleet Vehicles (MTCO2E)</th>
<th>Anesthetic Gas Use (MTCO2E)</th>
<th>GHG Emissions from Other Direct Emission Sources (MTCO2E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>550</td>
<td>286</td>
<td>1,609</td>
<td>1</td>
<td>2,446</td>
</tr>
<tr>
<td>2006</td>
<td>541</td>
<td>338</td>
<td>1,968</td>
<td>1</td>
<td>2,848</td>
</tr>
<tr>
<td>2007</td>
<td>830</td>
<td>137</td>
<td>1,870</td>
<td>1</td>
<td>2,838</td>
</tr>
<tr>
<td>2008</td>
<td>282</td>
<td>143</td>
<td>2,159</td>
<td>14</td>
<td>2,598</td>
</tr>
<tr>
<td>2009</td>
<td>394</td>
<td>35</td>
<td>2,013</td>
<td>14</td>
<td>2,455</td>
</tr>
<tr>
<td>2010</td>
<td>119</td>
<td>1,019</td>
<td>1,935</td>
<td>19</td>
<td>3,091</td>
</tr>
<tr>
<td>2011</td>
<td>110</td>
<td>41</td>
<td>2,210</td>
<td>18</td>
<td>2,379</td>
</tr>
<tr>
<td>2012</td>
<td>116</td>
<td>120</td>
<td>2,128</td>
<td>18</td>
<td>2,381</td>
</tr>
</tbody>
</table>

Table 4.3. Academic and Research Areas Scope 1 Emissions from Other Sources, Calendar Years 2005-2012.

Scope 2: Purchased Electricity Emissions

100,894 MTCO2E, or 40 percent of 2012 GHG emissions for ARAs are attributed to electricity purchased, as shown in Table 4.4 below, down 14.5 percent since last year. This is the result of the amount of electricity purchased from NES and the mix of electricity generation methods employed by TVA. See Tables B.8 and B.9 in the appendices for more details.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Kilowatt-Hours Purchased (KwH)</th>
<th>Total VU Emissions (MTCO2E)</th>
<th>Emissions Associated with Academic & Research Areas (65 percent of previous column) (MTCO2E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>294,070,522</td>
<td>223,343</td>
<td>145,173</td>
</tr>
<tr>
<td>2006</td>
<td>294,494,256</td>
<td>223,664</td>
<td>145,382</td>
</tr>
<tr>
<td>2007</td>
<td>287,734,887</td>
<td>218,531</td>
<td>142,045</td>
</tr>
<tr>
<td>2008</td>
<td>307,162,163</td>
<td>229,640</td>
<td>149,266</td>
</tr>
<tr>
<td>2009</td>
<td>305,308,699</td>
<td>180,553</td>
<td>117,359</td>
</tr>
<tr>
<td>2010</td>
<td>303,543,739</td>
<td>183,857</td>
<td>119,507</td>
</tr>
<tr>
<td>2011</td>
<td>313,049,916</td>
<td>181,657</td>
<td>118,077</td>
</tr>
<tr>
<td>2012</td>
<td>311,313,519</td>
<td>155,221</td>
<td>100,894</td>
</tr>
</tbody>
</table>

Table 4.4 GHG Emissions from Purchased Electricity for Academic and Research Areas, Calendar Years 2005-2012.

Scope 3: Indirect Emission Sources

Vanderbilt's indirect emissions include fuel use by commuters (faculty, staff and student commuters), fuel use from air travel and waste disposal. Indirect emissions for ARAs for calendar years 2005 through 2012 are displayed below in Table 4.5. Waste disposal emissions went significantly down in 2012 due to a 60 percent increase in recycling for the year. Although commuter travel emissions were up, overall Scope 3 emissions continued to trend downward. For more details, see Tables B.10, B.11, B.12, B.13 and B.14 in the appendices.
<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Waste Disposal Emissions (MTCO₂E)</th>
<th>Air Travel Emissions(^{25}) (MTCO₂E)</th>
<th>Commuter Travel Emissions (MTCO₂E)</th>
<th>Total Scope 3 GHG Emissions in Academic & Research Areas (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>1,022</td>
<td>5,259</td>
<td>43,010</td>
<td>49,291</td>
</tr>
<tr>
<td>2006</td>
<td>1,116</td>
<td>5,259</td>
<td>46,175</td>
<td>52,550</td>
</tr>
<tr>
<td>2007</td>
<td>1,150</td>
<td>5,259</td>
<td>49,496</td>
<td>55,905</td>
</tr>
<tr>
<td>2008</td>
<td>1,360</td>
<td>5,386</td>
<td>46,476</td>
<td>53,222</td>
</tr>
<tr>
<td>2009</td>
<td>1,205</td>
<td>6,944</td>
<td>44,186</td>
<td>52,335</td>
</tr>
<tr>
<td>2010</td>
<td>1,761</td>
<td>9,719</td>
<td>46,656</td>
<td>58,127</td>
</tr>
<tr>
<td>2011</td>
<td>1,651</td>
<td>8,993</td>
<td>42,929</td>
<td>53,573</td>
</tr>
<tr>
<td>2012</td>
<td>555</td>
<td>7,272</td>
<td>44,668</td>
<td>52,496</td>
</tr>
</tbody>
</table>

Table 4.5. Academic and Research Areas Scope 3 GHG Emissions Sources, Calendar Years 2005-2012.

![Graph](Figure 4.4. Academic and Research Areas Scope 3 Emissions, Calendar Years 2005-2012.)

\(^{25}\) Air travel for 2005 and 2006 is not readily available. 2007 data has been used for those two calendar years.
V. PATIENT CARE AREA GREENHOUSE GAS EMISSIONS

Results Summary

Patient Care Areas (PCAs) at Vanderbilt encompass hospital buildings and clinical buildings located on Vanderbilt’s core 330 acres. Table 5.1 illustrates annual GHG emissions from PCAs for calendar years 2005 through 2012 and demonstrates that GHG emissions from PCAs have dropped by over six percent in the last year. Figure 5.1 shows that GHG emissions from PCAs have been reduced over 16 percent since an all-time high in 2008.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>GHG Emissions from EPA-Required Sources (26) (\text{MTCO}_2\text{E})</th>
<th>Other Scope 1 Emissions (27) (\text{MTCO}_2\text{E})</th>
<th>Scope 2 Emissions (\text{MTCO}_2\text{E})</th>
<th>Scope 3 Emissions (\text{MTCO}_2\text{E})</th>
<th>Total GHGs Emitted from Patient Care Areas (\text{MTCO}_2\text{E})</th>
<th>Percent Decrease in GHGs Emitted from Previous Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>53,606</td>
<td>5,864</td>
<td>78,170</td>
<td>41,620</td>
<td>179,260</td>
<td>-</td>
</tr>
<tr>
<td>2006</td>
<td>51,178</td>
<td>5,873</td>
<td>78,283</td>
<td>47,215</td>
<td>182,548</td>
<td>-1.8%</td>
</tr>
<tr>
<td>2007</td>
<td>58,054</td>
<td>5,632</td>
<td>76,486</td>
<td>49,786</td>
<td>189,958</td>
<td>-4.1%</td>
</tr>
<tr>
<td>2008</td>
<td>58,291</td>
<td>6,817</td>
<td>80,374</td>
<td>44,503</td>
<td>189,985</td>
<td>-0.01%</td>
</tr>
<tr>
<td>2009</td>
<td>62,565</td>
<td>5,716</td>
<td>63,193</td>
<td>44,420</td>
<td>175,996</td>
<td>7.4%</td>
</tr>
<tr>
<td>2010</td>
<td>55,882</td>
<td>5,026</td>
<td>64,350</td>
<td>45,497</td>
<td>170,754</td>
<td>2.9%</td>
</tr>
<tr>
<td>2011</td>
<td>52,877</td>
<td>5,416</td>
<td>63,580</td>
<td>47,516</td>
<td>169,389</td>
<td>0.8%</td>
</tr>
<tr>
<td>2012</td>
<td>51,638</td>
<td>7,878</td>
<td>54,327</td>
<td>44,494</td>
<td>158,337</td>
<td>6.5%</td>
</tr>
</tbody>
</table>

Table 5.1. GHG Emissions from Patient Care Areas by Type, Calendar Years 2005-2012.

For the calendar year 2012, major contributors to the emissions from PCAs are shown in Figure 5.2.

\(26\) EPA-required sources includes coal-fired boilers, natural gas-fired boilers, and natural gas-fired turbines.
\(27\) Other Scope 1 Emissions sources include anesthetic gas use, emergency generators, fleet vehicles, and refrigerant releases.
Figure 5.2. GHG Emissions Sources from Patient Care Areas, Calendar Year 2012.

Figure 5.3 illustrates the contribution from direct emissions (Scope 1), emissions from purchased electricity (Scope 2), and indirect emissions (Scope 3) to overall GHG emissions from Vanderbilt's PCAs in 2012.

Figure 5.3. GHG Emissions Sources by Scope from Patient Care Areas, Calendar Year 2012.

Vanderbilt University PCAs were designated according to the criteria outlined in the Methodology section of the report. For PCA populations for 2012, please reference Table A.4 in the appendices.
Scope 1: EPA-Required Emission Sources

Individual building monthly steam and electricity usage for calendar years 2005 through 2012 revealed that approximately 35 percent of the steam and electricity consumed by Vanderbilt was consumed in Patient Care buildings. Therefore, 35 percent of the GHG emissions associated with the power plant were attributed to PCAs. In 2012, GHG emissions from EPA-required sources for PCAs amounted to 51,638 MTCO\(_2\)E, as shown in Table 5.2 below.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Coal Use: Power Plant (MTCO(_2)E)</th>
<th>Natural Gas Use: Power Plant (MTCO(_2)E)</th>
<th>Natural Gas Use: Boilers in Individual Buildings (MTCO(_2)E)</th>
<th>Total VU GHG Emissions from EPA-Required Stationary Sources(^{28}) (MTCO(_2)E)</th>
<th>GHG Emissions from EPA-Required Stationary Sources for Patient Care Areas (35 percent of previous column) (MTCO(_2)E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>96,478</td>
<td>51,695</td>
<td>4,988</td>
<td>153,161</td>
<td>53,606</td>
</tr>
<tr>
<td>2006</td>
<td>99,582</td>
<td>38,485</td>
<td>8,155</td>
<td>146,222</td>
<td>51,178</td>
</tr>
<tr>
<td>2007</td>
<td>111,344</td>
<td>48,258</td>
<td>6,268</td>
<td>165,869</td>
<td>58,054</td>
</tr>
<tr>
<td>2008</td>
<td>102,172</td>
<td>51,358</td>
<td>13,017</td>
<td>166,547</td>
<td>58,291</td>
</tr>
<tr>
<td>2009</td>
<td>105,956</td>
<td>64,096</td>
<td>8,705</td>
<td>178,758</td>
<td>62,565</td>
</tr>
<tr>
<td>2010</td>
<td>92,090</td>
<td>62,835</td>
<td>4,738</td>
<td>159,663</td>
<td>55,882</td>
</tr>
<tr>
<td>2011</td>
<td>87,022</td>
<td>58,405</td>
<td>5,651</td>
<td>151,078</td>
<td>52,877</td>
</tr>
<tr>
<td>2012</td>
<td>85,968</td>
<td>56,798</td>
<td>4,770</td>
<td>147,536</td>
<td>51,638</td>
</tr>
</tbody>
</table>

Table 5.2. Patient Care Areas GHG Emissions from EPA-Required Sources, Calendar Years 2005-2012.

Coal and Natural Gas Use at the Power Plant

The on-campus, co-generation power plant currently burns coal and natural gas to produce electricity, steam and chilled water for distribution to buildings located on the 330-acre Vanderbilt campus, including Patient Care buildings. The burning of coal and natural gas releases carbon dioxide, nitrous oxide and methane. The inventory results illustrate that approximately 35 percent of the overall 85,968 MTCO\(_2\)E, or 30,089 MTCO\(_2\)E, are produced from coal use at the power plant for PCAs. This equates to 19 percent of the overall 2012 PCA emissions. Additionally, 35 percent of the 56,798 MTCO\(_2\)E resulting from natural gas use, or 19,879 MTCO\(_2\)E, equates to 13 percent of the overall PCA emissions, as shown in Table B.1 of the appendices.

Natural Gas Use in Individual Buildings

Several Patient Care buildings use natural gas directly from Vanderbilt’s natural gas supplier. The consumption of natural gas within individual Patient Care buildings accounts for 1,670 MTCO\(_2\)E of 2012 emissions, as shown in Table B.1 in the appendices.

Scope 1: Other Direct Emission Sources

Vanderbilt’s direct emissions sources that are not required to be reported to the EPA are shown in Table 5.3, below. 2012 saw a significant increase in other direct emission sources. While emissions from emergency generators,

\[^{28}\] Emission factors taken from the EPA’s *Mandatory Reporting of Greenhouse Gases; Final Rule* [40 CFR Part 98, Subpart C].
refrigerant releases, fleet vehicles and anesthetic gas use were all above 2011 numbers, anesthetic gas use rose considerably higher, reaching its all-time high in 2012. Unfortunately, this amount is directly tied to patient needs at VUMC, so it is likely to fluctuate beyond the University’s control. See Tables B.2, B.3, B.6 and B.7 in the appendices for more details.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Diesel-powered Emergency Generators (MTCO₂E)</th>
<th>Refrigerant Releases (MTCO₂E)</th>
<th>Fleet Vehicles (Life Flight) (MTCO₂E)</th>
<th>Anesthetic Gas Use²⁹ (MTCO₂E)</th>
<th>GHG Emissions from Other Direct Emission Sources (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>296</td>
<td>189</td>
<td>2,206</td>
<td>3,174</td>
<td>5,864</td>
</tr>
<tr>
<td>2006</td>
<td>291</td>
<td>397</td>
<td>2,012</td>
<td>3,174</td>
<td>5,873</td>
</tr>
<tr>
<td>2007</td>
<td>447</td>
<td>131</td>
<td>1,880</td>
<td>3,174</td>
<td>5,632</td>
</tr>
<tr>
<td>2008</td>
<td>152</td>
<td>0</td>
<td>1,877</td>
<td>4,789</td>
<td>6,817</td>
</tr>
<tr>
<td>2009</td>
<td>212</td>
<td>0</td>
<td>1,608</td>
<td>3,896</td>
<td>5,716</td>
</tr>
<tr>
<td>2010</td>
<td>438</td>
<td>609</td>
<td>1,531</td>
<td>2,449</td>
<td>5,026</td>
</tr>
<tr>
<td>2011</td>
<td>315</td>
<td>98</td>
<td>1,643</td>
<td>3,360</td>
<td>5,416</td>
</tr>
<tr>
<td>2012</td>
<td>389</td>
<td>434</td>
<td>1,834</td>
<td>5,221</td>
<td>7,878</td>
</tr>
</tbody>
</table>

Table 5.3. Patient Care Areas Scope 1 Emissions from Other Direct Sources, Calendar Years 2005-2012.

Scope 2: Purchased Electricity Emissions

54,327 MTCO₂E, or 34 percent of 2012 GHG emissions for PCAs, are attributed to electricity purchased, as shown in Table 5.4 below, down 14.6 percent since last year. This is the result of the amount of electricity purchased from NES and the mix of electricity generation methods employed by TVA. See Tables B.8 and B.9 in the appendices for more details.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Kilowatt-Hours Purchased (KwH)</th>
<th>Total VU Emissions (MTCO₂E)</th>
<th>Emissions Associated with PCA (35 percent of previous column) (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>294,070,522</td>
<td>223,343</td>
<td>78,170</td>
</tr>
<tr>
<td>2006</td>
<td>294,494,256</td>
<td>223,664</td>
<td>78,283</td>
</tr>
<tr>
<td>2007</td>
<td>287,734,887</td>
<td>218,531</td>
<td>76,486</td>
</tr>
<tr>
<td>2008</td>
<td>307,162,163</td>
<td>229,640</td>
<td>80,374</td>
</tr>
<tr>
<td>2009</td>
<td>305,308,699</td>
<td>180,553</td>
<td>63,193</td>
</tr>
<tr>
<td>2010</td>
<td>303,543,739</td>
<td>183,857</td>
<td>64,350</td>
</tr>
<tr>
<td>2011</td>
<td>313,049,916</td>
<td>181,657</td>
<td>63,580</td>
</tr>
<tr>
<td>2012</td>
<td>311,313,519</td>
<td>155,221</td>
<td>54,327</td>
</tr>
</tbody>
</table>

Table 5.4 GHG Emissions from Purchased Electricity for Patient Care Areas, Calendar Years 2005-2012.

Scope 3: Indirect Emissions Sources

Vanderbilt’s indirect emissions include commuter fuel use by staff members in Patient Care buildings and off-site waste disposal. Indirect emissions for PCAs for calendar years 2005 through 2012 are displayed below in Table 5.5. Both waste disposal emissions and commuter travel emissions trended downward in 2012, dropping over six percent from 2011. For more details, see Tables B.16, B.17, B.18 and B.19 in the appendices.

²⁹ Anesthetic gas for 2005 and 2006 is not readily available. 2007 data has been used for those two calendar years.
<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Waste Disposal Emissions (MTCO₂E)</th>
<th>Commuter Travel Emissions (MTCO₂E)</th>
<th>Total Scope 3 GHG Emissions for PCA (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>1,585</td>
<td>40,035</td>
<td>41,620</td>
</tr>
<tr>
<td>2006</td>
<td>2,177</td>
<td>45,037</td>
<td>47,215</td>
</tr>
<tr>
<td>2007</td>
<td>1,706</td>
<td>48,079</td>
<td>49,786</td>
</tr>
<tr>
<td>2008</td>
<td>1,614</td>
<td>42,889</td>
<td>44,503</td>
</tr>
<tr>
<td>2009</td>
<td>1,653</td>
<td>42,767</td>
<td>44,420</td>
</tr>
<tr>
<td>2010</td>
<td>1,861</td>
<td>43,636</td>
<td>45,496</td>
</tr>
<tr>
<td>2011</td>
<td>1,991</td>
<td>45,525</td>
<td>47,516</td>
</tr>
<tr>
<td>2012</td>
<td>1,367</td>
<td>43,127</td>
<td>44,494</td>
</tr>
</tbody>
</table>

Table 5.5. Patient Care Areas Scope 3 GHG Emissions Sources, Calendar Years 2005-2012.

Figure 5.4. Patient Care Areas Scope 3 Emissions, Calendar Years 2005-2012.
VI. INVENTORY SUMMARY

Vanderbilt University Emissions Summary

Vanderbilt University’s GHG emissions for calendar years 2005 to 2012 are presented in Table 6.1. Total annual GHG emissions for Vanderbilt University during the eight-year period reached a maximum of 503,327 MTCO$_2$E in calendar year 2008 and a minimum of 410,006 MTCO$_2$E in calendar year 2012, decreasing by 7.2 percent from the previous year, 13.8 percent overall since 2005 and 18.5 percent from the all-time high in 2008, as shown in Figure 6.1.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Academic & Research Areas (MTCO$_2$E)</th>
<th>Patient Care Areas (MTCO$_2$E)</th>
<th>Total GHGs Emitted by VU (MTCO$_2$E)</th>
<th>Percent Decrease in GHGs From Previous Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>296,465</td>
<td>179,260</td>
<td>475,725</td>
<td>-</td>
</tr>
<tr>
<td>2006</td>
<td>295,825</td>
<td>182,548</td>
<td>478,374</td>
<td>-0.6%</td>
</tr>
<tr>
<td>2007</td>
<td>308,604</td>
<td>189,958</td>
<td>498,562</td>
<td>-4.2%</td>
</tr>
<tr>
<td>2008</td>
<td>313,341</td>
<td>189,985</td>
<td>503,327</td>
<td>-1.0%</td>
</tr>
<tr>
<td>2009</td>
<td>288,343</td>
<td>175,896</td>
<td>464,240</td>
<td>7.8%</td>
</tr>
<tr>
<td>2010</td>
<td>284,506</td>
<td>170,755</td>
<td>455,261</td>
<td>1.9%</td>
</tr>
<tr>
<td>2011</td>
<td>272,229</td>
<td>169,389</td>
<td>441,618</td>
<td>3.0%</td>
</tr>
<tr>
<td>2012</td>
<td>251,669</td>
<td>158,337</td>
<td>410,006</td>
<td>7.2%</td>
</tr>
</tbody>
</table>

Table 6.1. Total Vanderbilt GHG Emissions, Calendar Years 2005-2012.

Figure 6.1. Total Vanderbilt GHG Emissions, Calendar Years 2005-2012.
For calendar year 2012, Vanderbilt University emissions from EPA-required sources amounted to 147,536 MTCO$_2$E, which was reported to the EPA on March 20, 2013.

In calendar year 2012, purchased electricity, coal use at the on-campus, co-generation power plant, commuter travel and natural gas use at the on-campus, co-generation power plant were the most substantial sources of GHG emissions, accounting for 94 percent of annual GHG emissions from Vanderbilt University. These major sources present the most significant opportunities for improvements in Vanderbilt University's carbon footprint. Thus, Vanderbilt initiated a significant infrastructure improvement project in 2013 to convert VU's on-campus power plant to all-natural gas.

Overall GHG emissions typically increase as college campuses grow, even if buildings are being used more efficiently or the campus community is working to conserve resources. It is important to account for this growth when evaluating GHG emissions data by analyzing the emissions data in relation to pertinent institutional metrics, such as campus population, student enrollment, gross square feet of building space, research dollars awarded or patient visits. Growth of these institutional metrics can have a very positive impact on Vanderbilt and Middle Tennessee; so normalization of GHG emissions based on these metrics can allow for periodic comparisons and evaluation for improvements in efficiency and conservation while also accounting for the growth of the university.
Analysis and Interpretation of 2005-2012 Trending Results

Between 2005 and 2012, Vanderbilt University’s GHG emissions have decreased by:

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>13.8 percent</td>
</tr>
<tr>
<td>Per person at campus</td>
<td>26 percent</td>
</tr>
<tr>
<td>Per 1,000 gross square feet</td>
<td>27 percent</td>
</tr>
<tr>
<td>Per 1,000 research dollar awarded</td>
<td>34 percent</td>
</tr>
<tr>
<td>Per student</td>
<td>25 percent</td>
</tr>
<tr>
<td>Per inpatient day</td>
<td>26 percent</td>
</tr>
<tr>
<td>Per ambulatory day</td>
<td>52 percent</td>
</tr>
</tbody>
</table>

Overall GHG emissions are down 7.2 percent from last year, 13.8 percent since 2005 and 18.5 percent from the all-time high reached in 2008, even though square footage has increased by 7.4 percent, or over a million gross square feet, since 2008. Between 2005 and 2012, Vanderbilt University’s GHG emissions have decreased by 27 percent on a per gross 1,000 square foot basis, by 26 percent on a per person basis, by 25 percent per student and by 34 percent per 1,000 research dollar awarded to VU. Considering that Vanderbilt’s on-campus square footage has increased by over 17 percent, total population has increased by 16 percent and millions of research dollars awarded has increased by 26 percent since 2005, it is clear that VU Plant Operations, VUMC Plant Services, Campus Planning and Construction and VUMC Space and Facilities Planning are significantly improving the energy efficiency of Vanderbilt’s buildings in the midst of continued growth. Please reference the figures below for more information.

LEED Certified Buildings at Vanderbilt

Due to the ever-changing nature of Vanderbilt’s campus, renovations and building improvements are always in the works.

Vanderbilt University has a total of 14 LEED-certified projects as of 2012, including:

Certified: Chef James Bistro, Vanderbilt Health One Hundred Oaks

Silver: Crawford House, Sutherland House, Gillette House, Benson Hall, Library Archives

Gold: The Commons Center, Stambaugh House, Hank Ingram House, Murray House, Central Library, the Commons Center 3rd Floor Buildout, VANTAGE Lab
Emissions per Gross Square Foot
Calculating GHG emissions per gross square foot (GSF) of space provides a normalized method of interpreting emissions in light of Vanderbilt’s size and building energy efficiency. Heating and cooling building space, which requires energy, results in significant GHG emissions. A single calculation was made based on all Vanderbilt University facilities, totaling over 18,000,000 square feet. For more details please refer to Table A.3 in the appendices. Figure 6.3 shows a 27 percent reduction in GHG emissions per 1,000 GSF over the past eight years, even though several large new buildings have been built. This has resulted from significant investments by VU Plant Operations and VUMC Plant Services to improve existing building energy efficiency as well as LEED certification of new and major renovation construction projects.

![Figure 6.3. Total Vanderbilt GHG Emissions Per 1,000 GSF, Calendar Years 2005-2012.](image)

Emissions per Person
The size of the student population and faculty/staff population also directly influence the amount of GHGs emitted from Vanderbilt. More individuals on campus result in more building occupants, increased amounts of waste generation and more commuters. GHG emissions per person have decreased 26 percent during the past eight years as shown in Figure 6.4. GHG emissions per student are down 25 percent from 26.2 MTCO₂E in 2005 to 19.6 MTCO₂E in 2012 as shown in Figure 6.5. For additional information, please reference Tables A.1 and A.3 in the appendices.
Figure 6.4. Total Vanderbilt GHG Emissions Per Person, Calendar Years 2005-2012.

Figure 6.5. Vanderbilt Academic and Research Area GHG Emissions Per Student, Calendar Years 2005-2012.
Emissions per Research Dollars Awarded

Conducting research and operating laboratory facilities require large amounts of energy. Universities receiving substantial amounts of research dollars (like Vanderbilt) use those dollars to operate laboratories and advanced technology to make scientific discoveries that benefit humankind. These activities can increase GHG emissions on a per-person basis and a per-square-foot basis because of energy-intensive research activities. The typical laboratory uses four to five times more energy than an equivalent-sized office or classroom\(^\text{30}\). While Vanderbilt University’s research awards increased from $455 million in 2005 to $572 million in 2012, GHG emissions per 1,000 research dollars decreased 34 percent as shown in Figure 6.6. This is an impressive improvement in the energy efficiency of VU’s research buildings. For more details, please reference Table A.1 in the appendices.

![Figure 6.6. Vanderbilt ARA GHG Emissions Per 1,000 Research Dollars Awarded, Calendar Years 2005-2012.](image)

Emissions per Inpatient Day and Ambulatory Visit

Patient care facilities, such as the Vanderbilt University Medical Center, that provide health care 24 hours per day, 7 days per week, 365 days per year, can substantially contribute to GHG emissions. Few universities have on-campus patient care activities that match the size and extent of operations of Vanderbilt University Medical Center. Thus, calculating GHG emissions per inpatient day and ambulatory (clinic) visit provides a means of interpreting emissions while considering the quality and magnitude of our medical operations on campus. GHG emissions per both inpatient days and ambulatory visits have trended consistently downward, decreasing 26 percent and 52 percent, respectively,

since 2005 despite increases in the number of inpatient days and ambulatory visits as shown in Figures 6.7 and 6.8. For more details, please reference Table A.2 in the appendices.

Figure 6.7. Vanderbilt PCA GHG Emissions Per Inpatient Day, Calendar Years 2005-2012.

Figure 6.8. Vanderbilt PCA GHG Emissions Per Ambulatory Visit, Calendar Years 2005-2012.
This eight-year analysis illustrates that Vanderbilt University’s GHG emissions are trending in the right direction, both overall and when normalized by all important institutional metrics. Despite 2012 being named one of the hottest years on record, GHG emissions continued to decrease.

Interpreting Vanderbilt’s Results Compared to Other Universities

There are over 2,800 colleges and universities offering Bachelor’s and advanced degrees in the United States\(^{31}\). Only a small portion of these universities have completed GHG inventory reports and made them publicly available. Thus, Vanderbilt has acted proactively by taking this step forward. Additionally, most university GHG inventory reports do not include research and/or patient care activity, making Vanderbilt’s report more comprehensive than most.

While reports exist for a small number of Vanderbilt’s peer institutions, drawing comparisons between universities is difficult. Each school has its own defining characteristics and mix of variables even within the shared, primary emissions’ attributes. Thus, often the most useful standard to which Vanderbilt can accurately compare its GHG emissions from year to year is its own previous emissions inventory, utilizing consistent interpretations as presented in this report.

The authors recognize the tendency to place VU’s results in context with those of other universities. At Vanderbilt, several factors should be considered when comparing VU’s GHG emissions to others:

- 89 percent of Vanderbilt undergraduate students live in on-campus residence houses, which are supplied with centralized utilities such as chilled water, heat, electricity and air conditioning. Colleges and universities with larger commuter populations and/or off-campus housing would have potentially smaller Scope 1 emissions and larger Scope 3 emissions.

- Vanderbilt was awarded $572 million\(^{32}\) in 2012 to conduct scientific and medical research, with a majority of the research occurring in laboratories. Vanderbilt University has over 800 research laboratories which are large consumers of energy through the operation of lab equipment such as fume hoods, biosafety cabinets, computers, and autoclaves (four to five times that of the same size office or classroom\(^{33}\)).

- The Vanderbilt University Medical Center provides regional health care 24 hours per day, 7 days per week, 365 days per year. Very few universities have on-campus patient care that matches the size and extent of operations of Vanderbilt Medical Center. Moreover, universities that do have an associated medical center often exclude their medical centers from their GHG inventory. Due to Vanderbilt’s inability to pro-rate out its distribution of centralized utilities and its on-site, co-generated power, an omission of patient care buildings was not seen as appropriate.

As discussed above, the most common methods for successfully reporting GHG emissions is to analyze GHG emissions based on institutional metrics (GSF, full-time student enrollment, total campus population, research awards, and patient care activities).
inpatient days and ambulatory visits). Because efforts to draw comparisons are inevitable, we attempted to determine how Vanderbilt’s calendar year 2012 GHG emissions compared from the limited number of colleges and universities having such data available (as listed in Table 6.2); these universities were selected based upon one or more of the following measures:

- The university completed and published a GHG inventory;
- Similar climate and/or geographic location;
- Similar operational size;
- Similar campus population size;
- Similar activities (i.e., research and patient care);
- Inclusion of Scope 1, Scope 2 and Scope 3 emissions sources; and/or
- Comprehensiveness of emissions inventory.

Additional information on the peer institutions listed below is provided in Table A.13 in the appendices.

<table>
<thead>
<tr>
<th>University</th>
<th>Total Emissions (MTCO2E)</th>
<th>Emissions per 1,000 Square Feet</th>
<th>Emissions per Student</th>
<th>Emissions per $1,000 Research Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Michigan34</td>
<td>684,398</td>
<td>20.13</td>
<td>11.42</td>
<td>0.54</td>
</tr>
<tr>
<td>Duke University – Campus Only35</td>
<td>301,757</td>
<td>26.55</td>
<td>20.68</td>
<td>0.54</td>
</tr>
<tr>
<td>Washington University – St. Louis36</td>
<td>409,500</td>
<td>-</td>
<td>34.22</td>
<td>0.88</td>
</tr>
<tr>
<td>Emory University37</td>
<td>354,762</td>
<td>39.42</td>
<td>24.92</td>
<td>0.68</td>
</tr>
<tr>
<td>University of Pennsylvania38</td>
<td>294,210</td>
<td>22.32</td>
<td>11.90</td>
<td>0.32</td>
</tr>
<tr>
<td>Vanderbilt University – Academic & Research Areas Only39</td>
<td>251,669</td>
<td>27.1</td>
<td>19.6</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Table 6.2. Comparison of Vanderbilt University GHG Emissions with Other Universities.

As previously mentioned, conducting research and operating laboratory facilities require large amounts of energy and therefore increase GHG emissions on a per-person basis and a per-square-foot basis. When compared to other major research institutions, Vanderbilt’s GHG emissions compare quite well, with the lowest overall emissions and one of the lowest emissions per research dollar awarded. Figures 6.9 and 6.10 illustrate Vanderbilt’s GHG emissions and GHG emissions per $1,000 in research awarded in relation to several other research entities.

35 GHG emissions, GSF, and student, faculty, and staff populations for 2012 as reported to ACUPCC, http://rs.acupcc.org/progress/383/, 2012 research dollars retrieved from http://wustl.edu/about/facts/rankings/.
39 GHG emissions for CY 2012 from areas ARAs only.
Vanderbilt University recognizes its comparisons to peers; however, GHG inventory reports have been completed and made publicly available for only a small number of universities. Moreover, many GHG inventory reports do not include
research and/or patient care activity, making Vanderbilt's report more inclusive than most that have been published. Direct evaluations between universities are challenging, as each school possesses unique qualities and features and as there is currently no standardized methodology for calculating university carbon footprints. Therefore, our own emissions presented in this report provide the only applicable standard to which Vanderbilt can assess its GHG emissions in years past and the years to come.

Future Plans

This inventory, as well as previous ones, provides historical data and trending information that has enabled campus stakeholders to have sufficiently detailed information to make informed decisions to determine reduction strategies and compare future improvements in GHG emissions on campus. As the positive downward trend in all areas of GHG emissions indicates, VU is substantially investing in improving its carbon footprint. To monitor this positive progress, subsequent annual calculations of emissions will be conducted in the future, and will be made publicly available.

In Fall 2013, Vanderbilt University began the conversion of its co-generation power plant from coal and gas fuel to all-natural gas. This will continue to meet the power needs of the University and Medical Center in a more environmentally sustainable way. This conversion will increase operational efficiency, reduce greenhouse gas emissions, air pollutant emissions and noise pollution, and eliminate associated fuel use and emissions from trucking coal to the power plant.\(^{40}\)

Several factors guided the decision to upgrade Vanderbilt’s power plant to all natural gas:

- **Age of the existing boilers** - The existing power plant was constructed in 1962, and the original boilers were then replaced in 1988, 26 years later. These boilers are now 25 years old and near the end of their expected life cycle. Just like an automobile or a heat pump, fuel efficiency in a boiler decreases each year as the machinery gets older.

- **Improved operational efficiency** - Modern natural gas turbines and boilers deliver high fuel efficiency, less maintenance, and are more reliable than other forms of power generation, such as coal fired boilers.

- **New environmental regulations** - The Environmental Protection Agency (EPA) has enacted new regulations on the operation of institutional boilers. Not only are new boilers needed, but additional air emission controls, manpower, and recordkeeping would eventually be required.

- **Environmental impact improvements** - The new plant fueled entirely by natural gas will have reduced greenhouse gas emissions, air pollutant emissions (such as particulates), and noise pollution. Additionally, associated transportation fuel use and emissions due to coal trucking needs will be completely eliminated.

Suggestions on how the University community can continue to reduce its energy consumption can be found at Vanderbilt’s ThinkOne web site.\(^{41}\) Specific energy conservation information for PCAs, research areas, offices and classrooms and residence halls can be found at ThinkOne and are a significant, no-cost first step in reducing Vanderbilt’s carbon footprint. The most cost-effective and environmentally-friendly way to reduce our use of

\(^{41}\) The ThinkOne website may be accessed at http://www.vanderbilt.edu/sustainvu/thinkone.
nonrenewable energy sources is to first reduce our demand for energy. The kilowatt not needed is the most environmentally-friendly kilowatt of all. It will take the entire Vanderbilt community working together to reduce Vanderbilt's reliance on nonrenewable energy sources.

The SustainVU website also has information on Vanderbilt's green building program, efforts to improve energy and water efficiency in existing buildings, commuter choice programs, waste and recycling initiatives and academic research related to GHG emissions, all of which contribute to reductions in institutional emissions. All information related to Vanderbilt's GHG emissions reports and future updates and commitment statement will be publicly available on this site.
VII. APPENDIX A: 2005-2012 Trending Data and Calculations

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>GHG Emissions from Academic & Research Areas (MTCO$_2$E)</th>
<th>Gross Square Feet (GSF) - Academic & Research Areas</th>
<th>GHG Emissions per 1,000 GSF</th>
<th>Number of Students</th>
<th>GHG Emissions Per Student</th>
<th>Millions of Research dollars Awarded</th>
<th>GHG Emissions per $1,000 Research Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>296,465</td>
<td>8,228,419</td>
<td>36.0</td>
<td>11,294</td>
<td>26.2</td>
<td>$455</td>
<td>0.65</td>
</tr>
<tr>
<td>2006</td>
<td>295,825</td>
<td>8,416,644</td>
<td>35.1</td>
<td>11,481</td>
<td>25.8</td>
<td>$468</td>
<td>0.63</td>
</tr>
<tr>
<td>2007</td>
<td>308,604</td>
<td>9,039,821</td>
<td>34.1</td>
<td>11,607</td>
<td>26.6</td>
<td>$495</td>
<td>0.62</td>
</tr>
<tr>
<td>2008</td>
<td>313,341</td>
<td>9,165,093</td>
<td>34.2</td>
<td>11,847</td>
<td>26.4</td>
<td>$521</td>
<td>0.60</td>
</tr>
<tr>
<td>2009</td>
<td>288,343</td>
<td>9,208,635</td>
<td>31.3</td>
<td>12,093</td>
<td>23.8</td>
<td>$520</td>
<td>0.55</td>
</tr>
<tr>
<td>2010</td>
<td>284,506</td>
<td>9,257,242</td>
<td>30.7</td>
<td>12,506</td>
<td>22.7</td>
<td>$615</td>
<td>0.46</td>
</tr>
<tr>
<td>2011</td>
<td>272,229</td>
<td>9,263,363</td>
<td>29.4</td>
<td>12,704</td>
<td>21.4</td>
<td>$587</td>
<td>0.46</td>
</tr>
<tr>
<td>2012</td>
<td>251,669</td>
<td>9,296,428</td>
<td>27.1</td>
<td>12,836</td>
<td>19.6</td>
<td>$572</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Table A.1. GHG Normalization Metrics for Academic & Research Areas, Calendar Years 2005-2012.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>GHG Emissions from Patient Care Areas</th>
<th>GSF – Patient Care Areas</th>
<th>GHG Emissions per 1,000 GSF</th>
<th>Inpatient Days43</th>
<th>GHG Emissions per Inpatient Days</th>
<th>Ambulatory Visits43</th>
<th>GHG Emissions per Ambulatory Visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>179,260</td>
<td>4,957,823</td>
<td>36.2</td>
<td>238,266</td>
<td>0.75</td>
<td>940,018</td>
<td>0.191</td>
</tr>
<tr>
<td>2006</td>
<td>182,548</td>
<td>4,972,220</td>
<td>36.7</td>
<td>254,396</td>
<td>0.72</td>
<td>1,019,715</td>
<td>0.179</td>
</tr>
<tr>
<td>2007</td>
<td>189,958</td>
<td>5,124,754</td>
<td>37.1</td>
<td>260,977</td>
<td>0.73</td>
<td>1,095,559</td>
<td>0.173</td>
</tr>
<tr>
<td>2008</td>
<td>189,985</td>
<td>5,243,043</td>
<td>36.2</td>
<td>267,947</td>
<td>0.71</td>
<td>1,178,841</td>
<td>0.161</td>
</tr>
<tr>
<td>2009</td>
<td>175,896</td>
<td>6,192,303</td>
<td>28.4</td>
<td>265,733</td>
<td>0.66</td>
<td>1,266,255</td>
<td>0.139</td>
</tr>
<tr>
<td>2010</td>
<td>170,754</td>
<td>6,183,728</td>
<td>27.6</td>
<td>272,731</td>
<td>0.63</td>
<td>1,450,196</td>
<td>0.118</td>
</tr>
<tr>
<td>2011</td>
<td>169,389</td>
<td>6,183,728</td>
<td>27.4</td>
<td>282,547</td>
<td>0.60</td>
<td>1,586,395</td>
<td>0.107</td>
</tr>
<tr>
<td>2012</td>
<td>158,337</td>
<td>6,183,728</td>
<td>25.6</td>
<td>285,270</td>
<td>0.56</td>
<td>1,725,901</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Table A.2. GHG Normalization Metrics for Patient Care Areas, Calendar Years 2005-2012.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Total GHG Emissions</th>
<th>Total GSF</th>
<th>GHG Emissions per 1,000 GSF</th>
<th>Total VU Population</th>
<th>GHG Emissions per Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>475,725</td>
<td>13,186,242</td>
<td>36.08</td>
<td>29,237</td>
<td>16.3</td>
</tr>
<tr>
<td>2006</td>
<td>478,374</td>
<td>13,388,864</td>
<td>35.73</td>
<td>31,189</td>
<td>15.3</td>
</tr>
<tr>
<td>2007</td>
<td>498,562</td>
<td>14,164,575</td>
<td>35.20</td>
<td>32,712</td>
<td>15.2</td>
</tr>
<tr>
<td>2008</td>
<td>503,327</td>
<td>14,408,136</td>
<td>34.93</td>
<td>31,805</td>
<td>15.8</td>
</tr>
<tr>
<td>2009</td>
<td>464,240</td>
<td>15,400,938</td>
<td>30.14</td>
<td>32,308</td>
<td>14.4</td>
</tr>
<tr>
<td>2010</td>
<td>455,261</td>
<td>15,440,970</td>
<td>29.48</td>
<td>32,487</td>
<td>14.0</td>
</tr>
<tr>
<td>2011</td>
<td>441,618</td>
<td>15,447,090</td>
<td>28.59</td>
<td>33,591</td>
<td>13.1</td>
</tr>
<tr>
<td>2012</td>
<td>410,006</td>
<td>15,480,155</td>
<td>26.49</td>
<td>33,890</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Table A.3. GHG Normalization Metrics for Vanderbilt University, Calendar Years 2005-2012.

42 According to 2005-2012 research information found in ReVU: Quick Facts about Vanderbilt. Each year, the previous year’s data is replaced with data from the most current year. Email SustainVU@vanderbilt.edu for more information.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Students</th>
<th>Faculty</th>
<th>Academic & Research Staff</th>
<th>Academic & Research Population (students + faculty + staff)</th>
<th>Patient Care Staff</th>
<th>Total On-Campus Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>11,294</td>
<td>2,861</td>
<td>6,542</td>
<td>20,697</td>
<td>8,540</td>
<td>29,237</td>
</tr>
<tr>
<td>2006</td>
<td>11,481</td>
<td>3,004</td>
<td>7,097</td>
<td>21,582</td>
<td>9,607</td>
<td>31,189</td>
</tr>
<tr>
<td>2007</td>
<td>11,607</td>
<td>3,222</td>
<td>7,627</td>
<td>22,456</td>
<td>10,256</td>
<td>32,712</td>
</tr>
<tr>
<td>2008</td>
<td>11,847</td>
<td>3,358</td>
<td>7,073</td>
<td>22,278</td>
<td>9,527</td>
<td>31,805</td>
</tr>
<tr>
<td>2009</td>
<td>12,093</td>
<td>3,526</td>
<td>7,102</td>
<td>22,721</td>
<td>9,587</td>
<td>32,308</td>
</tr>
<tr>
<td>2010</td>
<td>12,506</td>
<td>3,733</td>
<td>6,667</td>
<td>22,906</td>
<td>9,581</td>
<td>32,487</td>
</tr>
<tr>
<td>2011</td>
<td>12,704</td>
<td>3,844</td>
<td>6,676</td>
<td>23,224</td>
<td>9,367</td>
<td>33,591</td>
</tr>
<tr>
<td>2012</td>
<td>12,836</td>
<td>3,990</td>
<td>6,733</td>
<td>23,559</td>
<td>10,331</td>
<td>33,890</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Academic GSF</th>
<th>Patient Care GSF</th>
<th>Total GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>8,228,419</td>
<td>4,957,823</td>
<td>13,186,242</td>
</tr>
<tr>
<td>2006</td>
<td>8,416,644</td>
<td>4,972,220</td>
<td>13,388,864</td>
</tr>
<tr>
<td>2007</td>
<td>9,039,821</td>
<td>5,124,754</td>
<td>14,164,575</td>
</tr>
<tr>
<td>2008</td>
<td>9,165,093</td>
<td>5,243,043</td>
<td>14,408,136</td>
</tr>
<tr>
<td>2009</td>
<td>9,208,635</td>
<td>6,192,303</td>
<td>15,400,938</td>
</tr>
<tr>
<td>2010</td>
<td>9,257,242</td>
<td>6,183,728</td>
<td>15,440,970</td>
</tr>
<tr>
<td>2011</td>
<td>9,263,363</td>
<td>6,183,728</td>
<td>15,447,090</td>
</tr>
<tr>
<td>2012</td>
<td>9,296,428</td>
<td>6,183,728</td>
<td>15,480,155</td>
</tr>
</tbody>
</table>

Table A.5. GSF Data Used for Normalization Metrics, Calendar Years 2005-2012.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Coal Use: Power Plant (MTCO₂E)</th>
<th>Natural Gas Use: Power Plant (MTCO₂E)</th>
<th>Natural Gas Use: Boilers in Individual Buildings (MTCO₂E)</th>
<th>Total VU GHG Emissions from EPA-Required Sources (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>96,478</td>
<td>51,695</td>
<td>4,988</td>
<td>153,161</td>
</tr>
<tr>
<td>2006</td>
<td>99,582</td>
<td>38,485</td>
<td>8,155</td>
<td>146,222</td>
</tr>
<tr>
<td>2007</td>
<td>111,344</td>
<td>48,258</td>
<td>6,268</td>
<td>165,869</td>
</tr>
<tr>
<td>2008</td>
<td>102,172</td>
<td>51,358</td>
<td>13,017</td>
<td>166,547</td>
</tr>
<tr>
<td>2009</td>
<td>105,956</td>
<td>64,096</td>
<td>8,705</td>
<td>178,758</td>
</tr>
<tr>
<td>2010</td>
<td>92,090</td>
<td>62,835</td>
<td>4,738</td>
<td>159,663</td>
</tr>
<tr>
<td>2011</td>
<td>87,022</td>
<td>58,405</td>
<td>5,651</td>
<td>151,078</td>
</tr>
<tr>
<td>2012</td>
<td>85,968</td>
<td>56,798</td>
<td>4,770</td>
<td>147,536</td>
</tr>
</tbody>
</table>

Table A.6. Total VU GHG Emissions from EPA-Required Sources, Calendar Years 2005-2012.

46 Calculated using data from VU Human Resources (employees by Building, Academic and Research Staff).
47 Calculated using data from VU Human Resources (employees by Building, Medical Center Staff).
<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Total VU GHG Emissions from EPA-Required Sources (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>153,161</td>
</tr>
<tr>
<td>2006</td>
<td>146,222</td>
</tr>
<tr>
<td>2007</td>
<td>165,869</td>
</tr>
<tr>
<td>2008</td>
<td>166,547</td>
</tr>
<tr>
<td>2009</td>
<td>178,758</td>
</tr>
<tr>
<td>2010</td>
<td>159,663</td>
</tr>
<tr>
<td>2011</td>
<td>151,078</td>
</tr>
<tr>
<td>2012</td>
<td>147,536</td>
</tr>
</tbody>
</table>

Table A.7. Allocation of GHG Emissions from EPA-Required Sources to Academic and Research Areas and Patient Care Areas, Calendar Years 2005-2012.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>GHG Emissions from Other Direct Emission Sources (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>2,446</td>
</tr>
<tr>
<td>2006</td>
<td>2,848</td>
</tr>
<tr>
<td>2007</td>
<td>2,838</td>
</tr>
<tr>
<td>2008</td>
<td>2,598</td>
</tr>
<tr>
<td>2009</td>
<td>2,455</td>
</tr>
<tr>
<td>2010</td>
<td>3,091</td>
</tr>
<tr>
<td>2011</td>
<td>2,379</td>
</tr>
<tr>
<td>2012</td>
<td>2,381</td>
</tr>
</tbody>
</table>

Table A.8. Academic and Research Areas Scope 1 Emissions from Other Sources, Calendar Years 2005-2012.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>GHG Emissions from Other Direct Emission Sources (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>5,864</td>
</tr>
<tr>
<td>2006</td>
<td>5,873</td>
</tr>
<tr>
<td>2007</td>
<td>5,632</td>
</tr>
<tr>
<td>2008</td>
<td>6,817</td>
</tr>
<tr>
<td>2009</td>
<td>5,716</td>
</tr>
<tr>
<td>2010</td>
<td>5,026</td>
</tr>
<tr>
<td>2011</td>
<td>5,416</td>
</tr>
<tr>
<td>2012</td>
<td>7,878</td>
</tr>
</tbody>
</table>

Table A.9. Patient Care Areas Scope 1 Emissions from Other Sources, Calendar Years 2005-2012.

48 Anesthetic Gas for 2005 and 2006 is not readily available. 2007 data has been used for those two calendar years.

49 Anesthetic Gas for 2005 and 2006 is not readily available. 2007 data has been used for those two calendar years.
<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Kilowatt-Hours Purchased (KWh)</th>
<th>Total VU Emissions (MTCO2E)</th>
<th>Emissions Associated with Academic & Research Areas (65 percent of total scope 2 emissions) (MTCO2E)</th>
<th>Emissions Associated with Patient Care Areas (35 percent of total scope 2 emissions) (MTCO2E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>294,070,522</td>
<td>223,343</td>
<td>145,173</td>
<td>78,170</td>
</tr>
<tr>
<td>2006</td>
<td>294,494,256</td>
<td>223,664</td>
<td>145,382</td>
<td>78,283</td>
</tr>
<tr>
<td>2007</td>
<td>287,734,887</td>
<td>218,531</td>
<td>142,045</td>
<td>76,486</td>
</tr>
<tr>
<td>2008</td>
<td>307,162,163</td>
<td>229,640</td>
<td>149,266</td>
<td>80,374</td>
</tr>
<tr>
<td>2009</td>
<td>305,308,699</td>
<td>180,553</td>
<td>117,359</td>
<td>63,193</td>
</tr>
<tr>
<td>2010</td>
<td>303,543,739</td>
<td>183,857</td>
<td>119,507</td>
<td>64,350</td>
</tr>
<tr>
<td>2011</td>
<td>313,049,916</td>
<td>181,657</td>
<td>118,077</td>
<td>63,580</td>
</tr>
<tr>
<td>2012</td>
<td>311,313,519</td>
<td>155,221</td>
<td>100,894</td>
<td>54,327</td>
</tr>
</tbody>
</table>

Table A.10. GHG Emissions from Purchased Electricity, Calendar Years 2005-2012⁵⁰.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Waste Disposal Emissions (MTCO2E)</th>
<th>Air Travel Emissions<sup>51</sup> (MTCO2E)</th>
<th>Commuter Travel Emissions (MTCO2E)</th>
<th>Total Scope 3 GHG Emissions: Academic & Research Areas (MTCO2E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>1,022</td>
<td>5,259</td>
<td>43,010</td>
<td>49,291</td>
</tr>
<tr>
<td>2006</td>
<td>1,116</td>
<td>5,259</td>
<td>46,175</td>
<td>52,550</td>
</tr>
<tr>
<td>2007</td>
<td>1,150</td>
<td>5,259</td>
<td>49,496</td>
<td>55,905</td>
</tr>
<tr>
<td>2008</td>
<td>1,360</td>
<td>5,386</td>
<td>46,476</td>
<td>53,222</td>
</tr>
<tr>
<td>2009</td>
<td>1,205</td>
<td>6,944</td>
<td>44,186</td>
<td>52,335</td>
</tr>
<tr>
<td>2010</td>
<td>1,761</td>
<td>9,719</td>
<td>46,646</td>
<td>58,127</td>
</tr>
<tr>
<td>2011</td>
<td>1,651</td>
<td>8,993</td>
<td>42,928</td>
<td>53,573</td>
</tr>
<tr>
<td>2012</td>
<td>555</td>
<td>7,272</td>
<td>44,668</td>
<td>52,496</td>
</tr>
</tbody>
</table>

Table A.11. Scope 3 Emissions from Academic and Research Areas, Calendar Years 2005-2012.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Waste Disposal Emissions (MTCO2E)</th>
<th>Commuter Travel Emissions (MTCO2E)</th>
<th>Total Scope 3 GHG Emissions: Patient Care Areas (MTCO2E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>1,585</td>
<td>40,035</td>
<td>41,620</td>
</tr>
<tr>
<td>2006</td>
<td>2,177</td>
<td>45,037</td>
<td>47,215</td>
</tr>
<tr>
<td>2007</td>
<td>1,706</td>
<td>48,079</td>
<td>49,786</td>
</tr>
<tr>
<td>2008</td>
<td>1,614</td>
<td>42,889</td>
<td>44,503</td>
</tr>
<tr>
<td>2009</td>
<td>1,653</td>
<td>42,767</td>
<td>44,420</td>
</tr>
<tr>
<td>2010</td>
<td>1,861</td>
<td>43,636</td>
<td>45,496</td>
</tr>
<tr>
<td>2011</td>
<td>1,991</td>
<td>45,525</td>
<td>47,516</td>
</tr>
<tr>
<td>2012</td>
<td>1,367</td>
<td>43,127</td>
<td>44,494</td>
</tr>
</tbody>
</table>

Table A.12. Scope 3 Emissions from Patient Care Areas, Calendar Years 2005-2012.

⁵⁰ TVA’s published fuel mix for electrical generation for 2005 through 2008 is as follows: coal (64 percent), nuclear (29 percent), and hydroelectric dams (7 percent). TVA’s published fuel mix for 2009 electrical generation is as follows: coal (47 percent), nuclear (34 percent), hydroelectric dams (7 percent), natural gas (6 percent), and renewable (6 percent). TVA’s published fuel mix for 2010 electrical generation is as follows: coal (51 percent), nuclear (36 percent), hydroelectric dams (9 percent), natural gas (4 percent), and renewable (<1 percent). TVA’s published fuel mix for 2011 electrical generation is as follows: coal (52 percent), nuclear (34 percent), hydroelectric dams (9 percent), natural gas (5 percent), and renewable (<1 percent). TVA’s published fuel mix for 2012 electrical generation is as follows: coal (41 percent), nuclear (38 percent), hydroelectric dams (9 percent), natural gas (12 percent), and renewables (<1 percent).

⁵¹ Air travel for 2005 and 2006 is not readily available. 2007 data has been used for those two calendar years.
<table>
<thead>
<tr>
<th>University</th>
<th>Total Emissions (MTCO2E)</th>
<th>GSF</th>
<th>Number of Students</th>
<th>Millions of Research Dollars Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Michigan52</td>
<td>684,398</td>
<td>34,000,000</td>
<td>59,933</td>
<td>$1,274</td>
</tr>
<tr>
<td>Duke University53</td>
<td>301,757</td>
<td>11,365,660</td>
<td>14,591</td>
<td>$560</td>
</tr>
<tr>
<td>Washington University – St. Louis54</td>
<td>409,500</td>
<td>Not reported</td>
<td>11,967</td>
<td>$468</td>
</tr>
<tr>
<td>Emory University55</td>
<td>354,762</td>
<td>9,000,000</td>
<td>14,236</td>
<td>$520.3</td>
</tr>
<tr>
<td>University of Pennsylvania56</td>
<td>294,210</td>
<td>13,181,289</td>
<td>24,725</td>
<td>$923</td>
</tr>
<tr>
<td>Vanderbilt University – Academic & Research Areas Only57</td>
<td>251,669</td>
<td>9,296,428</td>
<td>12,836</td>
<td>$572</td>
</tr>
</tbody>
</table>

Table A.13. GHG Emissions and Related Metrics Reported by other Universities.

53 GHG emissions, GSF, and student, faculty, and staff populations for 2012 as reported to ACUPCC, http://rs.acupcc.org/progress/383/. 2012 research dollars retrieved from http://wustl.edu/about/facts/rankings/.
56 GHG emissions, GSF, and student populations for 2012 from ACUPCC’s website at http://rs.acupcc.org/ghg/1516/.
57 Sponsored projects for 2012 retrieved from http://www.upenn.edu/about/facts.php
58 GHG emissions for CY 2012 from ARAs only. 2011 research dollars awarded.
VI. APPENDIX B: 2012 Calendar Year Data and Calculations

<table>
<thead>
<tr>
<th>Source</th>
<th>Metric Tons of Carbon Dioxide Equivalent (MTCO(_2)E)</th>
<th>Metric Tons of Carbon Dioxide Equivalent (MTCO(_2)E)</th>
<th>Metric Tons of Carbon Dioxide Equivalent (MTCO(_2)E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA-Required Sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal use at VU Power Plant</td>
<td>55,879</td>
<td>30,089</td>
<td>85,968</td>
</tr>
<tr>
<td>Natural Gas use at VU Power Plant</td>
<td>36,918</td>
<td>19,879</td>
<td>56,798</td>
</tr>
<tr>
<td>Natural Gas use in Individual Buildings</td>
<td>3,101</td>
<td>1,670</td>
<td>4,770</td>
</tr>
<tr>
<td>Subtotal of EPA-Required Emissions:</td>
<td>95,898</td>
<td>51,638</td>
<td>147,536</td>
</tr>
<tr>
<td>Other Scope 1 Emissions Sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel-Powered Generators</td>
<td>116</td>
<td>389</td>
<td>505</td>
</tr>
<tr>
<td>Refrigerant Releases</td>
<td>120</td>
<td>434</td>
<td>554</td>
</tr>
<tr>
<td>Fleet Vehicles</td>
<td>2,128</td>
<td>1,834</td>
<td>3,962</td>
</tr>
<tr>
<td>Anesthetic Gas Use</td>
<td>18</td>
<td>5,221</td>
<td>5,238</td>
</tr>
<tr>
<td>Subtotal of Other Scope 1 Emissions:</td>
<td>2,382</td>
<td>7,878</td>
<td>10,259</td>
</tr>
<tr>
<td>Scope 2 GHG Emissions: Electricity Purchases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity Purchased from NES</td>
<td>100,894</td>
<td>54,327</td>
<td>155,221</td>
</tr>
<tr>
<td>Scope 3 GHG Emissions: Indirect Sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty & Staff Commuting</td>
<td>44,668</td>
<td>43,127</td>
<td>87,795</td>
</tr>
<tr>
<td>Air Travel</td>
<td>7,272</td>
<td>-</td>
<td>7,272</td>
</tr>
<tr>
<td>Waste Disposal</td>
<td>555</td>
<td>1,367</td>
<td>1,923</td>
</tr>
<tr>
<td>Subtotal of Scope 3 Emissions:</td>
<td>52,496</td>
<td>44,494</td>
<td>96,990</td>
</tr>
<tr>
<td>Total emissions associated with each area per year:</td>
<td>251,669</td>
<td>158,337</td>
<td>410,006</td>
</tr>
</tbody>
</table>

Table B.1. Total Vanderbilt GHG Emissions, Calendar Year 2012.

<table>
<thead>
<tr>
<th>Source</th>
<th>Volume Consumed (gallons)</th>
<th>Emissions Factor</th>
<th>MTCO(_2)E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel fuel consumed by emergency generators – Academic Areas</td>
<td>11,439</td>
<td>1,000 gallons of diesel consumed = 10.14 MTCO(_2)E</td>
<td>116</td>
</tr>
<tr>
<td>Diesel fuel consumed by emergency generators – Patient Care Areas</td>
<td>38,371</td>
<td>1,000 gallons of diesel consumed = 10.14 MTCO(_2)E</td>
<td>389</td>
</tr>
</tbody>
</table>

Table B.2. GHG Emissions from Emergency Generators, Calendar Year 2012.
Table B.3. GHG Emissions from Refrigerant Releases, Calendar Year 2012

<table>
<thead>
<tr>
<th>Source</th>
<th>Volume Released (kilograms)</th>
<th>Emission Factor</th>
<th>MTCO₂E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant Releases - Academic Areas</td>
<td>92</td>
<td>1 kilogram of refrigerant = 1.3 MTCO₂E</td>
<td>120</td>
</tr>
<tr>
<td>Refrigerant Releases – Patient Care Areas</td>
<td>334</td>
<td>1 kilogram of refrigerant = 1.3 MTCO₂E</td>
<td>434</td>
</tr>
</tbody>
</table>

Table B.3. GHG Emissions from Refrigerant Releases, Calendar Year 2012

Table B.4. Academic and Research Areas GHG Emissions from Vanderbilt Owned Vehicles, Calendar Year 2012

<table>
<thead>
<tr>
<th>Fleet Component</th>
<th>Volume Consumed (gallons)</th>
<th>Emission Factor</th>
<th>Emissions from Fleet Component (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct sale of gasoline to fleet vehicles through Plant Operations</td>
<td>90,658</td>
<td>1,000 gallons of gasoline consumed = 8.93 MTCO₂E</td>
<td>810</td>
</tr>
<tr>
<td>Gasoline purchases by VU PD and Vandy Vans</td>
<td>1,809</td>
<td>1,000 gallons of gasoline consumed = 8.93 MTCO₂E</td>
<td>16</td>
</tr>
<tr>
<td>Estimate of gasoline purchases by remaining fleet vehicles (221 vehicles)</td>
<td>27,625</td>
<td>1,000 gallons of gasoline consumed = 8.93 MTCO₂E</td>
<td>247</td>
</tr>
<tr>
<td>Gasoline use by VUMC Shuttle Buses and Vans</td>
<td>82,870</td>
<td>1,000 gallons of gasoline consumed = 8.93 MTCO₂E</td>
<td>740</td>
</tr>
<tr>
<td>Diesel Fuel use by VUMC Shuttle Buses and Vans</td>
<td>27,951</td>
<td>1,000 gallons of diesel consumed = 10.14 MTCO₂E</td>
<td>283</td>
</tr>
<tr>
<td>Diesel Fuel use by Plant Operations</td>
<td>3,181</td>
<td>1,000 gallons of diesel consumed = 10.14 MTCO₂E</td>
<td>32</td>
</tr>
</tbody>
</table>

GHG Emissions from Academic & Research Fleet Vehicles: 2,128

Table B.4. Academic and Research Areas GHG Emissions from Vanderbilt Owned Vehicles, Calendar Year 2012

Table B.5. Academic and Research Areas GHG Emissions from Anesthetic Gas Use, Calendar Year 2012

<table>
<thead>
<tr>
<th>Anesthetic Gas</th>
<th>Department</th>
<th>Volume Used (kilograms)</th>
<th>Emission Factor</th>
<th>Emissions from Anesthetic Gas Use (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoflurane</td>
<td>Animal Care</td>
<td>50.7</td>
<td>1 kilogram of Isoflurane = 0.350 MTCO₂E</td>
<td>18</td>
</tr>
</tbody>
</table>

Table B.5. Academic and Research Areas GHG Emissions from Anesthetic Gas Use, Calendar Year 2012

Table B.6. GHG Emissions from Patient Care Fleet Vehicles (LifeFlight), Calendar Year 2012

<table>
<thead>
<tr>
<th>Fleet Component</th>
<th>Volume Consumed (gallons)</th>
<th>Emission Factor</th>
<th>Emissions from Fleet Component (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet-A Fuel used by LifeFlight</td>
<td>191,665</td>
<td>1,000 gallons of Jet A Fuel consumed = 9.57 MTCO₂E</td>
<td>1,834</td>
</tr>
</tbody>
</table>

Table B.6. GHG Emissions from Patient Care Fleet Vehicles (LifeFlight), Calendar Year 2012

58 Emission Factor for R-134A is used as a default emission factor, as some refrigerants do not have a published emission factor/global warming potential (GWP).

59 Estimate of gasoline purchases is based on ITS fleet vehicle use of 3,000 miles per year at 23 miles per gallon.
<table>
<thead>
<tr>
<th>Anesthetic Gas</th>
<th>Volume Used (kilograms)</th>
<th>Emission Factor</th>
<th>Emissions from Anesthetic Gas Use (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrous Oxide</td>
<td>14,723</td>
<td>1 kilogram of Nitrous Oxide = 0.310 MTCO₂E</td>
<td>4,564</td>
</tr>
<tr>
<td>Isoflurane</td>
<td>360</td>
<td>1 kilogram of Isoflurane = 0.350 MTCO₂E</td>
<td>126</td>
</tr>
<tr>
<td>Desflurane</td>
<td>354</td>
<td>1 kilogram of Desflurane = 0.989 MTCO₂E</td>
<td>350</td>
</tr>
<tr>
<td>Sevoflurane</td>
<td>523</td>
<td>1 kilogram of Sevoflurane = 0.345 MTCO₂E</td>
<td>180</td>
</tr>
<tr>
<td>Total for Anesthetic Gas Use/PCA</td>
<td></td>
<td></td>
<td>5,221</td>
</tr>
</tbody>
</table>

Table B.7. Patient Care Areas GHG Emissions from Anesthetic Gas Use, Calendar Year 2012.

Figure B.1. Vanderbilt GHG Emissions Sources, Calendar Year 2012.

60 Calculations and Values for Anesthetics taken from the EPA’s *Mandatory Reporting of Greenhouse Gases; Final Rule* [40 CFR Part 98, Subpart C].
Figure B.2. Vanderbilt GHG Emissions Sources by Scope, Calendar Year 2012.

Figure B.3. Vanderbilt Academic and Research Areas GHG Emissions Sources by Scope, Calendar Year 2012.
Table B.8. GHG Emissions from Electricity Purchases, Calendar Year 2012.

<table>
<thead>
<tr>
<th>Kilowatt-Hours Purchased (Kwh)</th>
<th>Emission Factor per 1,000 KwH (MTCO₂E)</th>
<th>Total Emissions (MTCO₂E)</th>
<th>Emissions Associated with Academic & Research Areas (65 percent of total emissions) (MTCO₂E)</th>
<th>Emissions Associated with Patient Care Areas (35 percent of total emissions) (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>311,313,519</td>
<td>0.4986</td>
<td>155,221</td>
<td>100,894</td>
<td>54,329</td>
</tr>
</tbody>
</table>

Table B.9. TVA’s published fuel mix for electrical generation for Calendar Years 2005 through 2012.

<table>
<thead>
<tr>
<th>Year</th>
<th>Coal</th>
<th>Nuclear</th>
<th>Hydroelectric Dams</th>
<th>Natural Gas</th>
<th>Renewables</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>64%</td>
<td>29%</td>
<td>7%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2006</td>
<td>64%</td>
<td>29%</td>
<td>7%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2007</td>
<td>64%</td>
<td>29%</td>
<td>7%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2008</td>
<td>64%</td>
<td>29%</td>
<td>7%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2009</td>
<td>47%</td>
<td>34%</td>
<td>7%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>2010</td>
<td>51%</td>
<td>36%</td>
<td>9%</td>
<td>4%</td>
<td><1%</td>
</tr>
<tr>
<td>2011</td>
<td>52%</td>
<td>34%</td>
<td>9%</td>
<td>5%</td>
<td><1%</td>
</tr>
<tr>
<td>2012</td>
<td>41%</td>
<td>38%</td>
<td>9%</td>
<td>5%</td>
<td><1%</td>
</tr>
</tbody>
</table>

Emission Factor based on TVA’s published fuel mix for electrical generation: coal (41 percent), nuclear (38 percent), hydroelectric dams (9 percent), natural gas (12 percent), and renewables (<1 percent).
Figure B.5. TVA Fuel Mix, Calendar Year 2012.

Table B.10. Assumptions for Faculty, Staff, and Student Commuter Travel for Academic & Research Areas, Calendar Year 2012.

<table>
<thead>
<tr>
<th></th>
<th>Percent commuting in a single-occupancy vehicle</th>
<th>Percent commuting in a carpool/vanpool</th>
<th>Percent commuting via bus or train</th>
<th>Other Forms of Commuting (walk/bike)</th>
<th>Days per year commuting to campus</th>
<th>Average Commute Distance (via automobile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>86%</td>
<td>6%</td>
<td>7%</td>
<td>1%</td>
<td>200</td>
<td>48</td>
</tr>
<tr>
<td>Staff</td>
<td>86%</td>
<td>6%</td>
<td>7%</td>
<td>1%</td>
<td>250</td>
<td>48</td>
</tr>
<tr>
<td>Student</td>
<td>15%</td>
<td>5%</td>
<td>2%</td>
<td>78%</td>
<td>200</td>
<td>10</td>
</tr>
</tbody>
</table>

Table B.11. Estimated Fuel Consumption for Academic and Research Areas by Commuters Based on Commuter Miles Traveled, Calendar Year 2012.

<table>
<thead>
<tr>
<th>Faculty and Staff Commuter Miles for Academic & Research Areas</th>
<th>Gasoline Consumed (gallons)</th>
<th>Diesel Fuel Consumed (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111,493,662</td>
<td>4,935,885</td>
<td>55,843</td>
</tr>
</tbody>
</table>

Table B.12. Academic and Research Areas GHG Emissions from Commuter Travel, Calendar Year 2012.

<table>
<thead>
<tr>
<th>Gasoline Consumed (estimated gallons)</th>
<th>Emission Factor</th>
<th>GHG Emissions (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,935,885</td>
<td>8.93 MTCO₂E per 1,000 gallons of gasoline consumed</td>
<td>44,102</td>
</tr>
</tbody>
</table>

Diesel Fuel Consumed (estimated gallons) | Emission Factor | GHG Emissions (MTCO₂E)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>55,843</td>
<td>10.14 MTCO₂E per 1,000 gallons of diesel consumed</td>
<td>566</td>
</tr>
</tbody>
</table>

GHG Emissions Associated with Commuter Travel: Academic & Research Areas (MTCO₂E) | 44,668 |

62 Average Commute Distance established by VUMC Parking and Transportation Services and VU Human Resources.

63 The fuel consumption estimate is based on a standard value provided by Clean Air - Cool Planet of 23 miles per gallon.
Table B.13. Academic and Research Areas GHG Emissions from Air Travel, Calendar Year 2012.

<table>
<thead>
<tr>
<th>Air Passenger-Miles traveled in 2011</th>
<th>Emission Factor</th>
<th>(Passenger-miles/1000) * Emission Factor = MTCO2E</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,361,690</td>
<td>0.77 MTCO2E per 1,000 passenger-miles travelled</td>
<td>7,272</td>
</tr>
</tbody>
</table>

Table B.14. Academic and Research Areas GHG Emissions from Waste Disposal, Calendar Year 2012.

<table>
<thead>
<tr>
<th>Disposal Method</th>
<th>Solid Waste Disposal (Tons)</th>
<th>Emission Factor</th>
<th>Waste Disposed * Emission Factor = MTCO2E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste landfilled with landfill gas recovery converted to electricity</td>
<td>2,229</td>
<td>1 Ton of waste 0.1745 MTCO2E = 388.9</td>
<td></td>
</tr>
<tr>
<td>Waste landfilled with landfill gas combusted to the atmosphere</td>
<td>503</td>
<td>1 Ton of waste 0.3055 MTCO2E = 153.5</td>
<td></td>
</tr>
<tr>
<td>Incinerated Waste</td>
<td>59</td>
<td>1 Ton of waste 0.22 MTCO2E = 12.9</td>
<td></td>
</tr>
</tbody>
</table>

Total MTCO2E Emitted from Waste Disposal: 555

Table B.15. Population of Students, Faculty, and Staff, Calendar Year 2012.

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Population Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>12,836</td>
</tr>
<tr>
<td>Faculty Members</td>
<td>3,990</td>
</tr>
<tr>
<td>University Central Staff</td>
<td>4,117</td>
</tr>
<tr>
<td>Research & Administrative Staff in Medical Center</td>
<td>2,616</td>
</tr>
<tr>
<td>Total Academic & Research Area Population</td>
<td>23,559</td>
</tr>
<tr>
<td>Total PCA Staff on campus</td>
<td>10,331</td>
</tr>
<tr>
<td>Off-Site Patient Care Staff</td>
<td>3,819</td>
</tr>
</tbody>
</table>

64 Passenger-miles traveled provided by Caldwell Travel Group.
65 Solid waste removed from Vanderbilt is disposed of at a Waste Management landfill in Camden, Tennessee. According to Waste Management, 81.6 percent of landfill gas from this landfill is used to generate electricity, and the remaining 18.4 percent is "flared" to the atmosphere. Therefore, 26 percent of Vanderbilt's solid waste volume is multiplied by a greenhouse gas emissions factor that is different from the emissions factor developed for flared landfill gas.
67 VU Financial Report 2012, http://financialreport.vanderbilt.edu/. Faculty member population includes faculty from the School of Medicine and School of Nursing.
69 Calculated using data from VU Human Resources (employees by Building, Medical Center Staff). Research & Administrative Staff in the Medical Center includes on-campus medical center employees that do not have direct contact with patients.
70 Calculated using data from VU Human Resources (employees by Building). “Off-Site” employees include those that work at One Hundred Oaks, clinics in other counties, etc.
71 Determined using data from VU Human Resources (employees by Building). “Off-Site” employees include those that work at One Hundred Oaks, clinics in other counties, etc.
<table>
<thead>
<tr>
<th>Disposal Method</th>
<th>Solid Waste Disposal (Tons)</th>
<th>Emission Factor</th>
<th>Waste Disposed * Emission Factor = MTCO₂E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste landfilled with landfill gas recovery converted to electricity</td>
<td>5,331</td>
<td>1 Ton of waste = 0.1745 MTCO₂E</td>
<td>930</td>
</tr>
<tr>
<td>Waste landfilled with landfill gas combusted to the atmosphere</td>
<td>1,202</td>
<td>1 Ton of waste = 0.3055 MTCO₂E</td>
<td>367</td>
</tr>
<tr>
<td>Incinerated Waste</td>
<td>5</td>
<td>1 Ton of waste = 0.22 MTCO₂E</td>
<td>1</td>
</tr>
<tr>
<td>Medical Waste Autoclaved Off-Site</td>
<td>285</td>
<td>1 Ton of waste = 0.243 MTCO₂E</td>
<td>69</td>
</tr>
</tbody>
</table>

Total MTCO₂E Emitted from Waste Disposal: 1,367

Table B.16. Patient Care Areas GHG Emissions from Waste Disposal, Calendar Year 2012

<table>
<thead>
<tr>
<th></th>
<th>Percent commuting in a single-occupancy vehicle</th>
<th>Percent commuting in a carpool/vanpool</th>
<th>Percent commuting via bus or train</th>
<th>Other Forms of Commuting (walk/bike)</th>
<th>Days per year commuting to campus</th>
<th>Average Commute Distance (via automobile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff</td>
<td>86%</td>
<td>6%</td>
<td>7%</td>
<td>1%</td>
<td>250</td>
<td>48</td>
</tr>
</tbody>
</table>

Table B.17. Assumptions for Staff Commuter Travel for Patient Care Areas, Calendar Year 2012.

<table>
<thead>
<tr>
<th>Staff Commuter Miles for Patient Care Areas</th>
<th>Gasoline Consumed (gallons)</th>
<th>Diesel Fuel Consumed (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112,139,749</td>
<td>4,776,272</td>
<td>44,452</td>
</tr>
</tbody>
</table>

Table B.18. Estimated Fuel Consumption for Patient Care Areas by Commuters Based on Commuter Miles Traveled, Calendar Year 2012.

<table>
<thead>
<tr>
<th>Gasoline Consumed (estimated gallons)</th>
<th>Emission Factor</th>
<th>GHG Emissions (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,776,272</td>
<td>8.93 MTCO₂E per 1,000 gallons of gasoline consumed</td>
<td>42,676</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diesel Fuel Consumed (estimated gallons)</th>
<th>Emission Factor</th>
<th>GHG Emissions (MTCO₂E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44,452</td>
<td>10.14 MTCO₂E per 1,000 gallons of diesel consumed</td>
<td>451</td>
</tr>
</tbody>
</table>

GHG Emissions Associated with Commuter Travel: Patient Care Areas (MTCO₂E)

43,127

Table B.19. Patient Care Areas GHG Emissions from Commuter Travel, Calendar Year 2012.

72 Solid waste removed from Vanderbilt is disposed of at a Waste Management landfill in Camden, Tennessee. According to Waste Management, 81.6 percent of landfill gas from this landfill is used to generate electricity, and the remaining 18.4 percent is “flared” to the atmosphere. Therefore, 26 percent of Vanderbilt's solid waste volume is multiplied by a greenhouse gas emissions factor that is different from the emissions factor developed for flared landfill gas.

73 Average Commute Distance established by VUMC Parking and Transportation Services and VU Human Resources.

74 The fuel consumption estimate is based on a standard value provided by Clean Air - Cool Planet of 23 miles per gallon.
GHG Emissions from On-Campus Coal Combustion at the Co-Generation Power Plant

<table>
<thead>
<tr>
<th>Coal (short tons or English tons)</th>
<th>Kilograms to metric ton conversion</th>
<th>High Heat Value (mmBtu/short ton) (Default EPA value)</th>
<th>Emission Factor (kgCO₂/mmbtu) (Default EPA value)</th>
<th>CO₂ Emissions (Metric Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,985</td>
<td>0.001</td>
<td>17.25</td>
<td>97.02</td>
<td>85,328</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coal (short tons or English tons)</th>
<th>Kilograms to metric ton conversion</th>
<th>High Heat Value (mmBtu/short ton) (Default EPA value)</th>
<th>Emission Factor (kgCO₂/mmbtu) (Default EPA value)</th>
<th>CH₄ Emissions (Metric Tons)</th>
<th>CO₂e (Metric Tons of CH₄ * 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,985</td>
<td>0.001</td>
<td>17.25</td>
<td>0.011</td>
<td>9.67</td>
<td>203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coal (short tons or English tons)</th>
<th>Kilograms to metric ton conversion</th>
<th>High Heat Value (mmBtu/short ton) (Default EPA value)</th>
<th>Emission Factor (kgCO₂/mmbtu) (Default EPA value)</th>
<th>N₂O Emissions (Metric Tons)</th>
<th>CO₂e (Metric Tons of N₂O * 310)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,985</td>
<td>0.001</td>
<td>17.25</td>
<td>0.0016</td>
<td>1.41</td>
<td>436</td>
</tr>
</tbody>
</table>

Total GHG Emissions from On-Campus Coal Combustion (MTCO₂E): 85,968

Partitioning of Emissions

- **Academic & Research Area Emissions from On-Campus Coal Combustion (65 percent of total emissions) (MTCO₂E):** 55,879
- **PCA Emissions from On-Campus Coal Combustion (35 percent of total emissions) (MTCO₂E):** 30,089

GHG Emissions from Natural Gas Combustion at the Co-Generation Power Plant

<table>
<thead>
<tr>
<th>Natural Gas (Thems)</th>
<th>Emission Factor (kgCO₂/mmbtu) (Default EPA Value)</th>
<th>Convert Therms to MMBTU</th>
<th>Convert Kilograms to Metric Tons</th>
<th>CO₂ Emissions (Metric Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,701,976</td>
<td>53.02</td>
<td>0.1</td>
<td>0.001</td>
<td>56,741.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Natural Gas (Thems)</th>
<th>Emission Factor (kgCO₂/mmbtu) (Default EPA Value)</th>
<th>Convert Therms to MMBTU</th>
<th>Convert Kilograms to Metric Tons</th>
<th>CH₄ Emissions (Metric Tons)</th>
<th>CO₂e (Metric Tons of CH₄ * 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,701,976</td>
<td>0.001</td>
<td>0.1</td>
<td>0.001</td>
<td>1.1</td>
<td>22.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Natural Gas (Thems)</th>
<th>Emission Factor (kgCO₂/mmbtu) (Default EPA Value)</th>
<th>Convert Therms to MMBTU</th>
<th>Convert Kilograms to Metric Tons</th>
<th>N₂O Emissions (Metric Tons)</th>
<th>CO₂e (Metric Tons of N₂O * 310)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,701,976</td>
<td>0.0001</td>
<td>0.1</td>
<td>0.001</td>
<td>0.1</td>
<td>33.18</td>
</tr>
</tbody>
</table>

Total GHG Emissions from On-Campus Natural Gas Combustion (MTCO₂E): 56,798

Partitioning of Emissions

- **Academic & Research Area Emissions from On-Campus Natural Gas Combustion (65 percent of total emissions) (MTCO₂E):** 36,919
- **PCA Emissions from On-Campus Natural Gas Combustion (35 percent of total emissions) (MTCO₂E):** 19,879

Table B.20. Calculations for GHG Emissions from On-Campus Coal Combustion, Calendar Year 2012

Table B.21. Calculations for GHG Emissions from On-Campus Natural Gas Combustion at the Co-Generation Power Plant, Calendar Year 2012

76 Greenhouse Gas Emissions Calculations and Values taken from the EPA’s Mandatory Reporting of Greenhouse Gases; Final Rule [40 CFR Part 98, Subpart C]. EPA Formula for Calculating Greenhouse Gas Emissions from Natural Gas Combustion: Natural Gas (therms) * Emission Factor * MMBTU conversion * Metric Ton conversion = Tons of Emissions. Therms of natural gas listed are the same amount reported in Vanderbilt’s Reporting of Greenhouse Gas Emissions to EPA. For the years 2005-2012, GHG calculations for natural gas consumption were based on cubic feet of natural gas * heat value, which is equivalent to therms.
GHG Emissions from Natural Gas Consumption in Individual Buildings

Natural Gas (Therms)	Emission Factor (kgCO₂/mmbtu) (Default EPA Value)	Convert Therms to MMBTU	Convert Kilograms to Metric Tons	CO₂ Emissions (Metric Tons)	CH₄ Emissions (Metric Tons)	CO₂e (Metric Tons of CH₄ * 21)	N₂O Emissions (Metric Tons)	CO₂e (Metric Tons of N₂O * 310)	CO₂e (Metric Tons of CH₄ * 21) + N₂O (Metric Tons of N₂O * 310)
----------------------	--------------------------------]	-------------------------	-------------------------------	---------------------------	----------------------------	-----------------------------	---------------------------	-----------------------------	--
898,644	53.02	0.1	0.001	4,765					
Natural Gas (Therms)	Emission Factor (kgCO₂/mmbtu) (Default EPA Value)	Convert Therms to MMBTU	Convert Kilograms to Metric Tons	CH₄ Emissions (Metric Tons)	CO₂e (Metric Tons of CH₄ * 21)	N₂O Emissions (Metric Tons)	CO₂e (Metric Tons of N₂O * 310)	CO₂e (Metric Tons of CH₄ * 21) + N₂O (Metric Tons of N₂O * 310)	
898,644	0.001	0.1	0.001	0.08986	1.80				
Natural Gas (Therms)	Emission Factor (kgCO₂/mmbtu) (Default EPA Value)	Convert Therms to MMBTU	Convert Kilograms to Metric Tons	N₂O Emissions (Metric Tons)	CO₂e (Metric Tons of N₂O * 310)				
898,644	0.0001	0.1	0.001	0.008986	2.79				

Total GHG Emissions from Natural Gas Consumption in Buildings (MTCO₂E): 4,770

Partitioning of Emissions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic & Research Area Emissions from Natural Gas Consumption in Buildings (65 percent of total emissions) (MTCO₂E):</td>
<td>3,101</td>
</tr>
<tr>
<td>Patient Care Areas Emissions from Natural Gas Consumption in Buildings (35 percent of total emissions) (MTCO₂E):</td>
<td>1,670</td>
</tr>
</tbody>
</table>

Table B.22. Calculations for GHG Emissions from On-Campus Natural Gas Consumption in Individual Buildings, Calendar Year 2012[^77].

[^77]: Greenhouse Gas Emissions Calculations and Values taken from the EPA’s *Mandatory Reporting of Greenhouse Gases: Final Rule* [40 CFR Part 98, Subpart C]. EPA Formula for Calculating Greenhouse Gas Emissions from Natural Gas Combustion: Natural Gas (therms) * Emission Factor * MMBTU conversion * Metric Ton conversion = Tons of Emissions. Therms of Natural Gas listed is the same amount reported in Vanderbilt’s Reporting of Greenhouse Gas Emissions to EPA. For the years 2005-2012, GHG calculations for natural gas consumption were based on cubic feet of natural gas * heat value, which is equivalent to therms.