SustainVU

Home » News » Energy » Ultrathin device harvests electricity from human motion

Ultrathin device harvests electricity from human motion

Posted in NEWS on Tuesday, July 25th, 2017

Imagine slipping into a jacket, shirt or skirt that powers your cell phone, fitness tracker and other personal electronic devices as you walk, wave and even when you are sitting down.

A new, ultrathin energy harvesting system developed at Vanderbilt University’s Nanomaterials and Energy Devices Laboratory has the potential to do just that. Based on battery technology and made from layers of black phosphorus that are only a few atoms thick, the new device generates small amounts of electricity when it is bent or pressed even at the extremely low frequencies characteristic of human motion.

Transmission electron microscope image showing the ultrathin layers of black phosphorus used in the energy harvesting device An angstrom (Å) is about the width of a single atom and is one tenth of a nanometer (nm). (Nanomaterials and Energy Devices Laboratory / Vanderbilt)

“In the future, I expect that we will all become charging depots for our personal devices by pulling energy directly from our motions and the environment,” said Assistant Professor of Mechanical Engineering Cary Pint, who directed the research.

The new energy harvesting system is described in a paper titled “Ultralow Frequency Electrochemical Mechanical Strain Energy Harvester using 2D Black Phosphorus Nanosheets” published Jul. 21 online by the journal ACS Energy Letters.

“This is timely and exciting research given the growth of wearable devices such as exoskeletons and smart clothing, which could potentially benefit from Dr. Pint’s advances in materials and energy harvesting,” observed Karl Zelik, assistant professor of mechanical and biomedical engineering at Vanderbilt, an expert on the biomechanics of locomotion who did not participate in the device’s development.

Graduate student Kathleen Moyer holds up the guts of the ultrathin energy harvesting device in a glove box. It is so thin it can be embedded in fabric. (John Russell / Vanderbilt)

Currently, there is a tremendous amount of research aimed at discovering effective ways to tap ambient energy sources. These include mechanical devices designed to extract energy from vibrations and deformations; thermal devices aimed at pulling energy from temperature variations; radiant energy devices that capture energy from light, radio waves and other forms of radiation; and, electrochemical devices that tap biochemical reactions.

“Compared to the other approaches designed to harvest energy from human motion, our method has two fundamental advantages,” said Pint. “The materials are atomically thin and small enough to be impregnated into textiles without affecting the fabric’s look or feel and it can extract energy from movements that are slower than 10 Hertz—10 cycles per second—over the whole low-frequency window of movements corresponding to human motion.”

One of the more futuristic applications of this technology might be electrified clothing. It could power clothes impregnated with liquid crystal displays that allow wearers to change colors and patterns with a swipe on their smartphone. “We are already measuring performance within the ballpark for the power requirement for a medium-sized low-power LCD display when scaling the performance to thickness and areas of the clothes we wear.” Pint said.

Pint also believes there are potential applications for their device beyond power systems. “When incorporated into clothing, our device can translate human motion into an electrical signal with high sensitivity that could provide a historical record of our movements. Or clothes that track our motions in three dimensions could be integrated with virtual reality technology. There are many directions that this could go.”

Read the full article here.

Tags: ,