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Psychologists studying whether and when events occur face unique design and analytic difficulties.
The fundamental problem is how to handle censored observations, the people for whom the target
event does not occur before data collection ends. The methods of survival analysis overcome these
difficulties and allow researchers to describe patterns of occurrence, compare these patterns
among groups, and build statistical models of the risk of occurrence over time. This article presents
a unified description of survival analysis that focuses on 2 topics: study design and data analysis. In
the process, we show how psychologists have used the methods during the past decade and identify
new directions for future application. The presentation is based on our own experience with the
methods in modeling employee turnover and examples drawn from research on mental health,
addiction, social interaction, and the life course.

Psychologists often study whether and, if so, when specific
events occur. Researchers investigating the course of affective
illness, for example, examined the age at first onset (Rice et al.,
1987), the length of initial illness spells (Zito, Craig, Wander-
ling, & Siegel, 1987), how long treated patients remain free of
symptoms (Lavori, Keller, & Klerman, 1984), whether individ-
uals with a history of affective disorders have another episode
{Amenson & Lewinsohn, 1981), how long successfully treated
individuals remain well before relapse {Prien et al., 1984), and
how long second and subsequent illness spells last (Shapiro,
Quitkin, & Fleiss, 1989). Similar questions about the timing of
events arise in studies of the age of attainment of developmental
milestones (first word, first step, first date, marriage, first
child), relapse after the cessation of undesirable behaviors (crim-
inal activity, smoking, drug use, alcohol abuse), and pauses and
shifts in social interactions (gaze, attention, conversation).

Research questions about time pose unique design and ana-
lytic difficulties. No matter when data collection begins and no
matter how long any subsequent follow-up period, some people
may not experience the target event before data collection ends;
some people may not develop an affective disorder, some peo-
ple in therapy may not stabilize, and some of those stabilized
may not relapse. Should the researcher assume that none of
these people will ever experience the event? All the researcher
knows is that by the end of data collection, usually an arbitrary
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point in time, the event had not yet occurred. Statisticians say
that such observations are censored.

The prospect of censoring complicates research design; the
presence of censoring complicates statistical analysis. Marry re-
searchers respond to these complications with ad hoc strategies,
none entirely satisfactory Some try design solutions by restrict-
ing data collection to uncensored observations (Taber & Proch,
1987). Others try analytic solutions by categorizing the out-
come and placing the censored observations in a single group
(Condiotte & Lichtenstein, 1981), deleting the censored obser-
vations (Litman, Eiser, & Taylor, 1979), and using the censored
outcome as a categorical predictor of another outcome that
varies over time (Coelho, 1984). Appropriately shunning these
strategies, others sidestep the "when" question entirely and ask
only the"whether" question: Does the event occur by a particu-
lar point in time (Grey, Osborn, & Reznikoff, 1986) or by each
of several successive points in time (Benfari & Eaker, 1984).

For years, psychologists recognized the severe limitations of
these strategies, most notably their sensitivity to the length of
data collection (e.g., Brownell, Marlatt, Lichtenstein, & Wilson,
1986; Furby, Weinrott, & Blackshaw, 1989; Hunt, Barnett, &
Branch, 1971; McFall, 1978; Nathan & Lansky, 1978; Sutton,
1979; Wainer, 1977). Until recently, however, few alternatives
were available. New developments in statistical theory accom-
panied by new developments in statistical computing have
changed how researchers can study time. The new methods—
known as survival analysis, event history analysis, or hazards
modeling—were developed by biostatisticians modeling hu-
man lifetimes (Cox, 1972; Cox & Oakes, 1984; Kalbfleisch &
Prentice, 1980; Miller, 1981) and have been extended by econo-
mists and sociologists studying social transitions (Allison, 1984;
Blossfeld, Hamerle, & Mayer, 1989; Heckman & Singer, 1985;
Tuma & Hannan, 1984). Differences in labels aside, these tech-
niques use similar mathematical roots to address similar re-
search goals: to help researchers simultaneously explore
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whether events occur—do people develop an affective disorder,
smoke a cigarette, interrupt a conversation—and if so, when.
Using specific techniques within the broad class of methods,
researchers can describe patterns of occurrence, compare these
patterns among groups, and build statistical models of the risk
of occurrence over time.

Owing to its genesis in modeling human lifetimes, where the
target event is death, survival analysis is shrouded in dark, fore-
boding terms. But beyond the terminology lies a powerful meth-
odology that appropriately uses data from all observations, un-
censored and censored cases alike. Data collection can be pro-
spective or retrospective, experimental or observational. Time
can be measured continuously or discretely. The only require-
ments are that (a) at every time point of interest, each individual
be classified into one of two or more mutually exclusive and
exhaustive states, and (b) the researcher know, for at least some
of these individuals, when the transition from one state to the
next occurs.

Because the methods of survival analysis adapt easily to psy-
chological phenomena, they now appear more often in the re-
search literature. A search of the Psychological Abstracts and
Educational Resources information Center databases for articles
published between 1980 and 1990,' for example, ledtooverlOO
citations. Substantive fields allied with those in which the meth-
ods emerged (medicine, economics, and sociology) are at the
forefront of application: research in mental health, organiza-
tional behavior, social psychology, and the life course. Several
recent articles also described how the methods can be used to
explore specific topics including social interaction (Allison &
Liker, 1982; Gardner & Griffin, 1989; Griffin & Gardner,
1989), organizational behavior (Fichman, 1988; Morita, Lee, &
Mowday, 1989), clinical trials (Greenhouse, Stangl, & Brom-
berg, 1989), and the life course (Johnson, 1988; Teachman,
1982).

Despite the growing use of survival analysis, a unified presen-
tation of the methods written for research psychologists has yet
to appear. In the present article, we begin to fill this void. After
developing the basic concepts underlying survival analysis, we
focus on two topics: study design and data analysis. R>r each,
we outline issues researchers face and provide guidelines for
making informed decisions about them. In the process, we re-
view how psychologists used the methods to date, and identify
new directions for future application. We base our presentation
on our own experience with the methods in modeling teacher
turnover (Murnane, Singer, & Willett, 1988, 1989; Murnane,
Singer, Willett, Kemple, & Olsen, 1991; Singer, in press; Singer
& Willett, 1988, in press; Willett & Singer, 1988,1989,1991, in
press) and examples drawn from four areas of inquiry: (a) men-
tal health research on the onset and duration of mental illness
and relapse after treatment; (b) addiction research on the onset
and duration of addictive behavior and relapse after treatment;
(c) social interaction research on whether and when individuals
interrupt a conversation, stop paying attention during class, or
avert a gaze; and (d) life course research on the onset and dura-
tion of life events and developmental milestones.

Concepts Underlying Survival Analysis

The concepts underlying survival analysis differ markedly
from the familiar means, standard deviations, and correlations

of traditional statistics. We develop these concepts here using
data reported by Stevens and Hollis (1989), who evaluated the
efficacy of supplementing a smoking-cessation program with
follow-up support sessions designed to help ex-smokers cope
with abstinence. The researchers randomly assigned 587 adults
who successfully completed a 4-day program to one of three
conditions: (a) 3 weeks of coping-skills training; (b) 3 weeks of
support sessions without skills training; or (c) no supplemental
sessions. For 50 weeks after quitting, participants returned a
biweekly postcard noting their smoking status. Defining absti-
nence as smoking no more than five cigarettes per month, Ste-
vens and Hollis asked whether the follow-up support helped
people remain abstinent and if it did not, when people were
most likely to relapse.

Survivor Function

Survival analysis begins with the survivor function. When
studying the efficacy of a smoking-cessation program, as in this
example, the population survivor function represents the proba-
bility that a randomly selected ex-smoker will remain abstinent
versus time. Researchers with a representative sample from a
target population can compute the sample survivor function,
which estimates the population probability that a randomly
selected person will remain abstinent longer than each time
assessed—in this example, 10 weeks, 20 weeks, and so on—un-
til everyone relapses or data collection ends (whichever happens
first).

The first panel of Figure 1 presents the sample survivor func-
tion for the 198 people in Stevens and Hollis's (1989) control
group.2 At the beginning of the study (the beginning of "time"),
the survival probability is 1.00. As time passes and people re-
lapse, the survivor function drops toward 0. In this study, 82%
abstain ("survive") more than 4 weeks, 66% abstain more than 8
weeks, and 60% abstain more than 12 weeks. By 50 weeks, when
data collection ends, 38% remain abstinent. These individuals
have censored relapse times either because they never relapse or
they do so after data collection ends. Because of censoring,
sample survivor functions rarely reach 0. Allison (1984) and
Kalbfleisch and Prentice (1980) presented formal definitions of
the survivor function.

The sample survivor function provides information for an-
swering the descriptive question: How many weeks pass before
the average smoker relapses? When the sample survivor func-

' We used the following key words for the search: survival analysis,

event history, hazard(s) model, proportional hazardfe), Cox('s) regres-

sion. For articles published between 1980 and 1983, we used three

additional key words: recidivism ratc(s), duration (near) longitudinal,

duration (near) analysis.
2 We estimated the sample survivor function in Figure 1 using data

kindly provided by Victor J. Stevens (Stevens & Hollis, 1989) using the

Kaplan-Meier product-limit method (Kalbfleisch & Prentice, 1980).
We then smoothed the obtained discrete estimates using a spline func-

tion (after the recommendation of Miller, 1981). The same method was

used to create all subsequent displays in the article. Our intentions were

strictly pedagogic: We wished to use continuous-time survivor and

hazard functions to introduce the concepts of survival analysis before

discussing differences between continuous-time and discrete-time
methods.
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Figure 1. Sample survivor (top) and hazard (bottom) functions for 198

ex-smokers based on data reported by Stevens and Hollis (1989).

tion reaches .50, half the ex-smokers have relapsed and half

have not. The estimated median lifetime identifies this mid-

point, which indicates how much time passes before half the

sample experiences the target event. As shown in Figure 1,

among ex-smokers without follow-up support, the answer is 16

weeks. The statistic incorporates data from both the 123 uncen-

sored individuals who relapsed within the 50 weeks of data

collection and the 75 censored individuals who did not.

All survivor functions have a shape similar to that displayed

in Figure 1: a negatively accelerating extinction curve, a mono-

tonically nonincreasing function of time. This generalization

was noted by Hunt and colleagues well before the advent of

modem survival analysis (Hunt et al, 1971; Hunt & Bespalec,

1974a, 1974b; Hunt & General, 1973; Hunt & Matarazzo, 1970).

After finding similar patterns in nearly 100 studies of smoking,

heroin, and alcohol cessation, Hunt et al. (1971) presaged the

utility of survivor functions, writing that they "hoped to use the

differences in slope between individual curves as a differential

criterion to evaluate various treatment techniques" (p. 455).

Hazard Function

If a large proportion of successful abstainers suddenly relapse

in a given month, the survivor function drops sharply, as hap-

pens in Figure 1, during each of the first few months of the
study When the slope of the survivor function is increasingly

negative, ex-smokers are at greater risk of relapse. Isolating time
periods with steep slope changes is one way to identify risky

time periods. But a better way to assess risk is to examine the

hazard function, a related mathematical function that registers

these changes in the slope of the (log) survivor function.

Mathematical definitions of hazard differ depending on

whether time is measured discretely or continuously. If time is

measured discretely, as in this example, hazard is the condi-

tional probability that an ex-smoker will relapse in a particular

time interval, given that the person has not relapsed by the

beginning of the interval. As the interval length decreases, the

probability that an event will occur during any given interval

decreases as well. At the limit, when time is measured continu-

ously, we must modify the definition of hazard because the

probability that an event occurs at any instant approaches zero.

So, in continuous time, hazard is the instantaneous rate of re-

lapse, given uninterrupted abstinence until that time. Allison

(1984) and Kalbfleicsh and Prentice (1980) provided formal

definitions of hazard in both discrete and continuous time.

Like the survivor function, the hazard function can be plot-

ted versus time, yielding a profile of the risk of relapsing each

week, given uninterrupted abstinence until that week. The

magnitude of each week's hazard indicates the risk of relapsing

in that week: The higher the hazard, the greater the risk. Each

interval's hazard is calculated using data on only those individ-

uals still eligible to experience the event during the interval (the

risk set); individuals who have already relapsed are not in-

cluded.

The lower panel of Figure 1 contains the sample hazard func-

tion corresponding to the sample survivor function in the top

panel. The risk of relapse is high in each of the first few weeks of

the study and then declines over time. Ex-smokers are at great-

est risk of relapse immediately after they quit; those who suc-

cessfully abstain for several months are likely to abstain for at

least a year.

Use of the hazard function in psychological research was

proposed well before the arrival of modern survival methods,

but because the associated statistical models were not yet avail-

able, much information in the function remained unexploited.

For example, McFall (1978), Sutton (1979) and Lhman et al.

(1979) suggested that researchers examine relapse on a period-

by-period basis, as the hazard function does, and identify who

relapses and when. These authors appropriately dismissed the

survivor function as too crude a summary because of its consis-

tent shape regardless of the distribution of risk.

The hazard function, in contrast, effectively captures the dis-

tribution of risk across time. Figure 2 contains four hazard

functions, each portraying a different risk profile. Because

peaks indicate periods of elevated risk, they pinpoint when the

target event is most likely to occur.

The hazard function in panel A is flat; risk is unrelated to

time, and the event occurs at random. Because age, period, and

cohort effects influence human behavior (Baftes & Nes-

selroade, 1972; Featherman & Lerner, 1985; Hogan, 1984;

Schaie, 1965), flat hazard functions are uncommon in psycho-
logical research. Nevertheless, duration-independent behavior

has been found in studies of time to marital breakdown after

the birth of a child (Fergusson, Horwood, & Shannon, 1984),

time to shifts in attention in the classroom (Felmlee & Eder,

1983; Felmlee, Eder, & Tsui, 1985), and time to changing a
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Figure 2. Four prototypical hazard functions: panel A, flat; panel B,

early peak; panel C, middle peak; and panel D, late peak.

decision in the face of irrelevant information from a low-status
partner (Hembroff& Myers, 1984).

Hazard functions with a definitive peak are more common. If
the target event most likely occurs immediately after "the
clock" starts, the hazard function peaks early (panel B). As
shown in Figure 1, such hazard functions arise in addiction
relapse studies. The early peak indicates the high risk of relapse
immediately after cessation; the later level segment indicates
the safe period when abstinent individuals rarely relapse. Haz-
ard functions with early peaks have been found in studies of the
relapse of mental illness (Lavori et al, 1984), recurrence of
spousal violence (Berk & Sherman, 1985, 1988; Sherman &
Berk, 1984), recidivism of sexual offenders (Soothill & Gibbens,
1978), marital dissolution (Morgan, Lye, & Condran, 1988;
Tuma, Hannan, & Groeneveld, 1977), and employee turnover
(Fichman, 1988; Murnane et al., 1989,1991; Sorensen & Tuma,
1981).

Other hazard functions peak at intermediate (panel C) or late
(panel D) points in time. If the risk of an event increases over
time, the hazard function will peak later. Hazard functions
with late peaks have been found in diverse substantive areas,
including studies of human lifetimes (Gross & Clark, 1975),
retirement (Campbell, Mutran, & Parker, 1987), and the time
until the settlement of labor strikes (Kiefer, 1988).

Middle peaks arise primarily in studies with long data collec-
tion periods. This design dependency arises for a simple reason:
In short studies, the particular time producing the middle peak
appears to be late on the time axis simply because no data are
collected afterward. As a result, retrospective studies, which

easily cover extended periods of time, often reveal hazard func-
tions with middle peaks. For example, when Diekmann and
Mitter (1983) retrospectively asked young adults when they first
shoplifted (if they ever did), the answers ranged from ages 4 to
16, with a peak during early adolescence—ages 12 to 14. Also, in
a 12-month retrospective study of when Thai mothers stop exclu-
sively breastfeeding their infants, Tognetti (1990) found a peak
at 8 months.

Incidence and Prevalence: An Analogy for Hazard

and Survival

Because hazard and survival functions may be unfamiliar
concepts, we offer an epidemiological analogy to concepts that
some readers may find more familiar: incidence and preva-
lence. Incidence measures the number of new events occurring
during a time period (expressed as a proportion of the number
of individuals at risk), whereas prevalence cumulates these risks
to the total number of events that have occurred by a given time
(also as a proportion; see, e.g., Kleinbaum, Kupper, & Morgen-
stern, 1982; Lilienfeld & Lilienfeld, 1980). Incidence and preva-
lence correspond directly to hazard and survival: Hazard repre-
sents incidence, and survival represents cumulative prevalence.

This analogy reinforces the importance of examining both
the survivor and hazard functions. Epidemiologists have long
recognized that although prevalence assesses the extent of a
problem at a particular point in time, incidence is the key to
disease etiology (Mausner & Bahn, 1974). Why? Because preva-
lence confounds incidence with duration. Conditions with
longer durations may be more prevalent even if they have equal
or lower incidence rates. To determine when people are at risk,
epidemiologists study incidence, and when they study inci-
dence, they are actually studying hazard.

Design: Collecting Survival Data

Survival analysis requires data summarizing the behavior of a
sample of individuals over time. Data can be collected prospec-
tively at several points in time or retrospectively at a single point
in time, with probes that permit event-history reconstruction.
The best studies tailor the time frame to the target event. When
studying social interaction, for example, a series of 10-min seg-
ments might suffice, but when studying marital dissolution,
even a 10-year window might not. In the following sections, we
discuss nine issues that must be considered when the collection
of survival data is being designed: deciding who to study, defin-
ing the possible states, identifying the beginning of time, select-
ing the length of data collection, choosing intervals for prospec-
tive data collection, reconstructing event histories in retrospec-
tive data collection, minimizing attrition, handling repeated
events, and determining how many people to study We discuss
them in the order in which they usually arise during research
planning.

Deciding Who to Study

As with any statistical method, the full advantages of survival
analysis require a representative sample of individuals selected
from an appropriate target population. Although data collected
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from convenience samples can be used, probabilistic state-

ments, population generalizations of sample summary statis-

tics, and statistical inferences may be incorrect.3 Because many

psychologists using survival methods have worked with sociolo-

gists accustomed to stringent sampling, our literature search

identified many articles whose findings were based on represen-

tative samples (e.g, Fergusson, Horwood, & Dimond, 1985;

Teachman & Polonko, 1984; Yamaguchi & Kandel, 1987). We

hope this standard will persist as the methods find their way

into substantive areas unrelated to sociology.

A more problematic issue concerns the need to define care-

fully the target population from which the sample will be se-

lected. Subtle variations in population definitions can inadver-

tently distort the distribution of time, the very quantity of inter-

est. Consider the tempting strategy of eliminating censoring

altogether by restricting the target population to only those

individuals with known event times. When studying how long it

took social service agencies in Alabama to discharge children

from foster care, for example, Milner (1987) defined his target

population as 222 children who were released from care during

1984 and 1985 (thus disregarding those who were not dis-

charged). He then selected a sample of 75 children and found

that of these 37% entered care within 5 months of discharge,

29% entered care within 6 to 11 months of discharge, 14% en-

tered care within 12 to 24 months of discharge, and the remain-

ing 20% entered care over 25 months before discharge.

The estimated median time to discharge in Milner's (1987)

sample was 6 to 11 months. Should we conclude that the average

child in foster care stays less than 1 year? Although Milner

chose a probability sample from a well-defined target popula-

tion, we do not know the answer to this question because his

target population is unsuitable for answering it. Milner knew

about discharge times only among children already discharged;

he ignored those who remain in care. Children in foster care for

long periods of time are likely to have been excluded from his

study. Determining how long the average child stays in foster

care requires a random sample of all children in foster care.

Milner's sampling strategy leads to an underestimate of the

average duration in the full population.

Some target-population definitions create more subtle biases.

Especially problematic are retrospective studies oflife-threaten-

ing events. A population of individuals still living obviously

excludes those who have already succumbed. In their retrospec-

tive study of age at first suicide ideation among college students,

for example, Bolger, Downey Walker, and Steininger (1989) la-

mented the limited generalizability of their study because it

necessarily excluded "those who have committed suicide or

who are not attending college because of suicidal behavior"

(P. 187).
When a sample excludes individuals who have already experi-

enced the event of interest before data collection began, statisti-

cians say that the sample is left truncated. Left truncation has

received very little attention in the methodological literature,

perhaps because the nature of the problem—the omission of

any information—makes its difficult to evaluate the extent or

impact of the truncation. As Hutchison (1988a, 1988b) noted,

many methodologists ignore left truncation entirely or incor-

rectly fail to distinguish it from another methodological diffi-

culty discussed later: left censoring. To avoid the complications

arising from left truncation, we offer some design advice: When-

ever possible, define the target population using delimiters

unrelated to time, and if this is impossible, fully explore the

potential biases created by whatever definition you use.

Defining the Possible States and the Target Event

At every time point of interest, each individual under study

must occupy one, and only one, of two or more states. The

states must be mutually exclusive (nonoverlapping) and exhaus-

tive (of all possible states). Each individual is either ill or well,

smoking or abstinent, breastfed or eating supplemental foods.

The target event occurs when an individual moves from one

state to another.

States must be defined precisely, with clear guidelines indi-

cating the specific behaviors, responses, or scores constituting

each state. Individual variation and measurement difficulties

complicate this task because states may blend or have fuzzy

boundaries. In their review of recidivism among sex offenders,

for example, Furby et al. (1989) compared several definitions of

recidivism: recommission of the same crime, of any sex crime,

or of any crime. They also asked whether recidivism requires a

conviction or whether commission of a crime is sufficient for

classification.

Researchers developing guidelines for defining states can

learn much from the addiction-relapse literature. Substance

abuse—of alcohol, food, drugs, or tobacco—can be assessed in

many ways using biochemical assays, clinical judgment, and

self-reports to name a few. Whereas treatment programs may

proffer the goal of total abstinence (e.g., Alcoholics Anony-

mous), researchers generally avoid such restrictive definitions

because they lead to underestimates of the time to relapse. By

defining relapse as a single sip of alcohol, more people will

relapse sooner. Less limited definitions have the opposite effect:

They bias estimates toward late relapse. Seeking the best of

both worlds, Brownell et al. (1986) argued for using at least two

definitions—lapse (a temporary slip that may or may not lead to

relapse) and relapse—because different factors may predict the

two events.

\ariation in the definition of states may help explain the

variation in relapse rates reported in the literature. In a prospec-

tive study of unaided smoking cessation, for example, Marlatt,

Curry, and Gordon (1988) found that 1 month after quitting,

23% of the sample never actually quit (they smoked again within

24 h), 36% quit for at least 24 h but subsequently relapsed within

the month, 16% were primarily abstinent but smoked one or

two cigarettes, and only 25% were successfully abstinent. Con-

sider the many different relapse rates that could be calculated

from these figures: by setting aside individuals who never really

quit, by pooling the primarily abstinent individuals with the

relapsers, or by pooling them with the successfully abstinent

individuals.

3 When conducting a randomized experiment, of course, the de-
creased generalizability associated with convenience samples may be
onset by the resultant increase in internal validity (Light, Singer, &
Willett, 1990). Nevertheless, we strongly encourage researchers to se-
lect representative samples from well-defined target populations to
increase the validity of their inferences.
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We cannot review here all the measurement considerations
necessary for deriving reliable and valid definitions of event
states. Instead we offer more modest advice: Collect data with
as much precision as possible so that you can appropriately
code transitions from one state to the next.

Identifying the Beginning of Time

The problem of starting the clock is more complicated than it
may appear. Because birth is both handy and meaningful,
many researchers use it when studying developmental se-
quences and milestones. In a community survey of selected
mental disorders, for example, Burke, Burke, Regier, and Rae
(1990) appropriately used chronological age (time since birth) to
examine when respondents first reported diagnoses.

But the simplest start time may not always be the best. Even
developmental studies may appropriately count time from an-
other beginning. When modeling outcomes among premature
infants, for example, gestational age might be more appro-
priate. Time can also begin after related events occur or at a
moment convenient to the researcher. This issue is more than
academic. Imprecise start times lead to imprecise event times.

Some researchers start the clock when the individual experi-
ences a precipitating event, such as leaving school (Marini,
1987), getting arrested (Zatz, 1985), getting pregnant (Yamagu-
chi & Kandel, 1987), having an abortion (Gibb & Millard,
1981), getting married (Teachman, 1982), having a child (Fer-
gusson et al., 1984), taking a job (Mobley, Griffeth, Hand, &
Meglino, 1979), or quitting smoking (Brownell etal., 1986). Use
of these start times is appropriate because an individual is at
risk of the target event only after experiencing the precipitating
event. This is true even if the precipitating event only crudely
approximates the beginning of time. Researchers modeling af-
fective disorders, for example, typically use the date of psycho-
logical evaluation, diagnosis, or completion of therapy to start
the clock, even though they might like to use the actual time of
disease onset (Gallagher-Thompson, Hanley-Peterson, &
Thompson, 1990; Simons, Murphy, Levine, & Wetzel, 1986; Zis
& Goodwin, 1979).

Although the best start date is relevant to the research
agenda, some researchers use an arbitrary start date if no other
compelling argument can be marshalled. Researchers conduct-
ing experiments typically use the date of randomization (Peto,
et al, 1976) or the date of intervention (Berk & Sherman, 1988;
Greenhouse et al., 1989) for just this reason. When studying
ongoing social interactions, the clock might as well start at a
convenient moment, because there is little hope of identifying a
substantively meaningful start time in a long-term continuing
process. Using this argument, in their study of continuities and
breaks in gazes between a husband and wife, Gardner and Grif-
fin (1989) used a single arbitrarily selected 20-min segment of
interaction in which the couple was asked to discuss a question
about their marriage.

What happens if the start date is unknown for some individ-
uals under study? Statisticians say that such observations are
left censored (to distinguish them from right-censored observa-
tions in which the event times are unknown). Fichman (1989)
encountered left censoring when studying absenteeism among
465 coal miners during a single calendar year. Fichman's inter-

est was in the length of attendence spells, which begin when a
coal miner returns to work after an absence and stop when the
coal miner is absent another day. During the year, each coal
miner generated several attendence spells, but the first spell was
always left censored because the immediately prior absence oc-
curred during the previous calendar year and was thus un-
known to Fichman.

Methods for analyzing left-censored data remain in their in-
fancy Although Turnbull (1974,1976) offered some basic de-
scriptive approaches and Flinn and Heckman (1982) and Cox
and Oakes (1984) offered some guidelines for developing mod-
els, most methodologists dismiss the problem soon after intro-
ducing the terminology (see, e.g., Blossfeld et al, 1989, p. 29;
Tuma & Hannan, 1984, p. 13 5). The most common advice (Alli-
son, 1984; Tuma & Hannan, 1984) is that researchers set the
left-censored spells aside from analysis, the strategy eventually
adopted by Fichman (1989) when faced with left-censored at-
tendence spells.

We augment this analytic advice with related design advice:
When possible, select a target population and a start time that
eliminates or minimizes the possibility of left censoring. Track
the employment durations of newly hired workers from their
date of hire. Follow the breastfeeding patterns of infants imme-
diately after they are born. The goal of these design strategies is
to eliminate left censoring before it occurs, so that a researcher
does not expend time and effort collecting data that will later be
discarded or whose omission will distort the distribution of the
very quantity of interest: time.

Selecting the Length of Data Collection

Once the clock starts, it must eventually stop. Clocks in retro-
spective studies stop on the date of interview; clocks in prospec-
tive studies can, in theory at least, continue indefinitely. As a
practical matter, though, most prospective studies follow a sam-
ple for a finite, preselected period of time. The length of data
collection determines the amount of right censoring (hereafter
referred to as censoring). Because longer data collection pe-
riods yield fewer censored observations, the simple maxim is,
the longer, the better. But beware: Longer data collection pe-
riods have their own disadvantages, including higher costs and
increased attrition.

When deciding on the length of follow-up, remember that to
determine when the event is likely to occur, ft must actually
occur for enough people under study. If the target event never
occurs during data collection, all observations are censored.
The researcher has little information, knowing only that it gen-
erally takes longer than this period for the event to occur.

There is no universally appropriate length of follow-up. The
answer depends on the event under study. We try to make this
decision by using information about the anticipated shape of
hazard function and the probable median lifetime to apply a
simple rule of thumb: The follow-up period should be long
enough for at least half the sample to experience the target event
during data collection. This ensures sufficient information for
estimating a median lifetime and, as we show later in the sec-
tion on determining sample size, it ensures reasonable statisti-
cal power. Using nonstatistical arguments, McFall (1978) sug-
gested that smoking-relapse studies use a 6- to 12-month follow-
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up. In our review of smoking-relapse studies published during

the 1980s, we found that this guideline is widely accepted; the

modal follow-up period was 1 year, and this period yielded an

average censoring rate below 50%.

Events with legal ramifications may be easier to follow for

longer periods of time. Hunt and Bespalec (1974b) made this

point when they found that heroin-addiction studies had longer

follow-up periods than smoking-cessation studies. Nathan and

Lansky (1978) suggested that alcoholism- and drug-relapse stud-

ies use a 2-year follow-up. Prospective studies of recidivism

among criminals often have even longer follow-ups (Blumstein

& Cohen, 1987; Farrington, Ohlin, & Wilson, 1986; Schmidt &

Witte, 1988).

Regardless of the length of follow-up, researchers must explic-

itly state its length. Relapse rates are meaningless unless linked

to specific time periods. In a study of reinstitutionalization

among mentally retarded adults, for example, Seltzer, Seltzer,

and Sherwood (1982) reported that 65% of the subjects were not

reinstitutionalized, but the researchers fail to specify in what

time frame. Without this information, how can we know

whether this percentage is low or high or know how to compare

this rate to others found elsewhere? Even well-documented lon-

gitudinal studies using sophisticated analytic techniques occa-

sionally omit this important piece of information (Zatz, 1985).

The length of data collection is key to understanding the ulti-

mate course of survival.

Choosing Intervals for Data Collection in

Prospective Studies

Once the data collection window is set, the researcher must

decide how often to collect follow-up data within this time pe-

riod. Researchers studying social interactions can collect data

in continuous time because they generally use videotapes of

short duration that commence at randomly selected times

(Bloxom, 1984, 1985; Drass, 1986; Felmlee & Eder, 1983;

Gardner & Griffin, 1989; Hembroff& Myers, 1984).

Researchers studying other psychological phenomena gener-

ally observe a sample of individuals for longer periods of time; a

further complication is that the clock generally starts at birth or

after a precipitating event. Under these circumstances, logisti-

cal and financial constraints dictate data collection at discrete

intervals. Although some researchers gather sufficient informa-

tion using only one follow-up (with probes that permit retrospec-

tive reconstruction of event histories), we believe that system-

atic collection of data at regular intervals is far better. Even

then, probes must be used to retrospectively reconstruct events

transpiring between interviews.

The use of prespecified discrete data collection points adds

measurement imprecision. If transitions occur in continuous

time but data are collected in discrete time, a researcher will

never know an individual's mental state at the crucial transition

moment. This imprecision has serious consequences if infor-

mation about this moment is key for predicting the timing of

events, as in addiction relapse, where the coping skills of the

ex-smoker, drinker, eater, or drug user may determine whether

the person succumbs to temptation. Shiftman (1982) used an

innovative design to overcome this restriction; he interviewed

183 ex-smokers who called a smoking-cessation hotline because

they were in crisis. This design may be useful in other substan-

tive areas requiring data describing the precise moment of tran-

sition.

Several strategies can be used to reconstruct event histories

in prospective studies. Bounded-recall probes can help im-

prove the quality of data describing behavior between inter-

views. At the beginning of the second and subsequent inter-

views, Neter and Waksberg (1964) suggested that interviewers

ask about behavior only after reminding respondents of their

responses during the previous interview. S. Cohen and Lichten-

stein (1990) simply used multiple definitions of events. After

each interview, they labeled individuals who said that they were

not currently smoking and had not smoked even a puff during

the last week as point abstinent; they labeled individuals who

were point abstinent at all interviews up to the assessment point

and had not smoked more than 3 days since quitting as continu-

omfy abstinent.

At what specific time points should limited data collection

resources be targeted? Although the regular collection of data at

equally spaced intervals is the most systematic approach, this

strategy may omit information about the periods of greatest

research interest. To maximize information about transitions

from one state to the next, collect the most data when events are

the most likely to occur.

We find it helpful to use the shape of the hazard function to

inform this decision: Collect data more frequently when hazard

is high and less frequently when hazard is low. This allocation

strategy was used effectively by Hall, Rugg, Tunstall, and Jones

(1984), who, in their 1-year prospective study of smoking cessa-

tion after behavioral skills training, placed their four data col-

lection periods at 3,6,26, and 52 weeks after treatment. If they

had spaced data collection episodes equally and waited until

Week 13 to first collect follow-up data, they would have been

unable to determine that the risk of relapse was highest in the

few weeks immediately after cessation.

Reconstructing Event Histories in Retrospective

Data Collection

In 1837, William Farr wrote, "Is your study to be retrospec-

tive or prospective? If the former, the replies will be general,

vague, and I fear of little value" (cited in Lilienfeld & Lilienfeld,

1980). His words remain true today. Researchers studying the

timing of events are well advised to collect data prospectively

But when studying infrequent events, prospective data collec-

tion may be infeasible. With few alternatives available, re-

searchers choose the second-best approach: Interview people

retrospectively and ask, "Has the event ever occurred? If so,

when did it first occur?" Retrospective data collection has been

used successfully by researchers studying age at first date

(Dornbusch et al, 1981), first shoplift (Diekman & Mitter,

1983), first use of alcohol, tobacco, and drugs (Adler & Kandel,

1983), first suicide ideation (Bolger et al, 1989), and cessation

of breastfeeding (Diamond, McDonald, & Shah, 1986).

Retrospective data are imperfect at best. Although rare

events—marriage, childbirth, hospitalization—may be re-

membered indefinitely and highly salient events—major acci-

dents or illnesses—may be remembered for 2 or 3 years, habit-

ual events—activities of daily living—are forgotten almost im-
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mediately (Bradburn, 1983; Sudman & Bradtrorn, 1982). The
longer the time period, the greater the error. In addition, as we
noted earlier, if the event of interest is death (as in the case of
suicide), the collection of retrospective data from a given cohort
ensures that sampling will be biased by the omission of those
who have already experienced the event of interest.

Three errors are common: (a) memory failures, in which re-
spondents forget events entirely; (b) telescoping, in which events
are remembered as having occurred more recently than they
actually did; and (c) rounding, in which respondents drop frac-
tions and report even numbers or numbers ending in 0 or 5.
These errors create different biases: Memory failures lead to
underreporting, telescoping to overreporting, and rounding to
both.

Supplemental aids and records can help reduce errors. Re-
cords control overreporting that is due to telescoping but have
no effect on omission; aided recall, where the subject is explic-
itly presented with the possible options and is asked directly
whether any particular event happened, reduces the number of
omissions but may increase telescoping (Sudman & Bradburn,
1974). Researchers developing items for retrospective recall
would do well to consult strategies described in the ongoing
series, Cognition and Survey Measurement, published by the
National Center for Health Statistics (see, e.g., Lessler, Tour-
angeau, & Sailer, 1989; Means, Nigam, Zarrow, Loftus, & Don-
aldson, 1989).

If retrospective recall is the only alternative, is it worth the
effort? We believe it is. In their retrospective study of suicide
ideation, Bolger et al. (1989) successfully used several ap-
proaches to improve recall. Although studying a threatening
event, they couched the study in less threatening terms, about
the development of the concept of death and suicide. They
never asked about respondents' mental health or suicidal behav-
ior, only about thoughts and knowledge about others. Question-
naires were anonymous and self-administered in a group set-
ting. Respondents were college students, close enough in age to
the time period of interest (adolescence) but old enough to be
removed.

Another word of caution is in order. Retrospective data col-
lection {^especially problematic if informants, not the individ-
uals themselves, provide the data. Collecting retrospective data
from some informants may not even be worth the effort. In a
retrospective study of the familial transmission of affective dis-
orders, for example, Stancer, Persad, Wagener, and Jorma
(1987) ultimately had to set aside from analysis all parents and
relatives of probands who were not personally interviewed.

Minimizing Attrition

Collecting prospective longitudinal data is difficult and ex-
pensive. Researchers most successful at minimizing attrition
have used some of the following strategies: Explain to respon-
dents why you need to follow them; ask them to contact you if
they move; visit their homes and ask neighbors for information
about them; pay them for participation in each interview; have
them pay you an "earnest deposit" refundable at the end of the
last interview; offer lottery prizes for those who successfully
complete all required interviews (S. Cohen & Lichtenstein,
1990, used a videotape recorder); mail a newsletter at regular

intervals; record the names and addresses of several relatives or
friends not living with them; convene reunion meetings; main-
tain contact at regular intervals even if you are not recording
data as frequently; and consult official records (jail, hospital,
welfare, driver registration). Crider, Willits, and Bealer (1971,
1973), Farrington, Gallagher, Morley, St. Ledger, and West
(1990), and Murphy (1990) offered many helpful strategies for
minimizing attrition.

Despite diligent effort, most researchers lose some individ-
uals to follow-up. Researchers attempting to improve their
study by using a long follow-up period face a further conun-
drum: The longer the follow-up, the greater the attrition. Indi-
viduals lost to follow-up have censored event times. However,
this type of censoring is not the noninformative censoring for
which survival methods were developed. Individuals lost to fol-
low-up can differ substantially from individuals who continue
to participate. In the well-controlled Ontario Exercise-Heart
Collaborative Study, for example, Oldridge et al. (1983) found
that smokers and blue-collar workers were more likely to
drop out.

What should a researcher do with the data on individuals lost
to follow-up? Although multiple imputation methods offer
much promise for handling these observations (Little & Rubin,
1987), two simple strategies can sometimes suffice. One is to
assign each case a censored event time equal to the length of
time the person was observed (without the event occurring). If
an individual participated for the first 6 months of a 12-month
study before dropping out, censor the event time at 6 months.
The other approach is to use a worst-case scenario: Assume that
the event actually occurred when the case was lost to follow-up.
Under this strategy, the event time is not censored.

The appropriateness of these alternatives depends, in part,
on the target behavior under study. As Tuma and Hannan
(1984) pointed out, assuming that the event occurred when the
observation is actually censored is tantamount to receding a
nonevent as an event. However, in some substantive fields, such
as addiction relapse, this receding may have much substantive
basis. In fact, addiction researchers usually assume that individ-
uals lost to follow-up have relapsed. They argue that these indi-
viduals are notoriously unfaithful subjects, and if they were
"clean" they would keep in touch. Within 12 weeks after begin-
ning a study of 221 treated alcoholics, opiate users, and ciga-
rette smokers, for example, Hall, Havassy, and Wasserman
(1990) lost 73 people (one third of their sample) to follow-up
despite valiant attempts to minimize attrition. To ascertain the
impact of attrition on analysis, the researchers conducted ex-
tensive sensitivity analyses, including coding relapse as occur-
ring the week after the last interview completed and setting
aside these cases from analysis. All analytic findings were simi-
lar in sign and magnitude, although the standard errors of pa-
rameter estimates were higher because of a loss of statistical
power. The use of multiple strategies to analyze attrited cases
increases confidence in the analytic results.

Handling Repeated Events

Many events are irreversible: first word, first step, puberty,
high school graduation, and death to name a few. Once they
occur, they cannot occur again. Other events—depression, in-
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carceration, crimes, abortion, childbirth, marriage—can occur
again and again. When studying the timing of potentially re-
peatable events, researchers must note the spell number under
study, because the natural course of a first spell may differ from
the natural course of second and subsequent spells.

Zatz (1985) recognized the ramifications of multiple spells.
Studying the arrest histories of 257 boys referred to the Depart-
ment of Corrections during an 11-year period, she found a total
of 1,916 arrests. Rather than analyze each arrest separately (first
arrest, second arrest, and so on), she combined the arrests to-
gether and used the number of priors as a predictor, finding that
prior arrests increased the rate of commitment and decreased
the rate of probation. We discuss this strategy further in the
Analysis: Examining Survival Data section.

The presence of multiple spells may help explain many puz-
zles in relapse research. Klerman (1978) and Lavori et al. (1984)
suggested that variation in relapse rates may be attributable to
researchers' failure to note how many prior episodes of depres-
sion each subject had. Amenson and Lewinsohn (1981) sug-
gested that multiple spells may explain the higher prevalence of
depression among women. Although they agreed that the
higher prevalence may, in fact, be attributable to an increased
risk of depression or episodes of longer duration, they also sug-
gested that relapse may hold the key. Previously depressed
women may be at greater risk of recurrence than previously
depressed men. Researchers studying addiction relapse have
noted renewed abstinence on the part of formerly abstinent
people who relapsed early after quitting. Previous treatment,
even unsuccessful treatment, may increase the probability of
success of subsequent treatments.

Determining How Many People to Study

Having specified in broad outline the design of a study, the
final step is to determine how many people to study. Statisti-
cians determine the minimum number of people a researcher
should study by conducting a statistical power analysis (e.g., J.
Cohen, 1990; Kraemer & Thiemann, 1988). Before conducting
a power analysis, a researcher must specify the particular hy-
pothesis to be tested, the desired Type I and Type II error rates,
and the minimum effect size considered important; for survival
analysis, the researcher must also specify the distribution of the
hazard function and the length of follow-up.

Biostatisticians have derived methods for determining sam-
ple size with survival data, each applicable under somewhat
different circumstances. Donner (1984) and Lachin (1981) re-
viewed the literature; Freedman (1982) provided tables for two
group comparisons; Makuch and Simon (1982) provided for-
mulas for multiple-group comparisons; Schoenfeld and Richter
(1982) provided nomograms for the same purpose; Bernstein
and Lagakos (1978) and Dupont and Plummer (1990) described
computer programs that perform these and other calculations
for several designs; and Rubinstein, Gail, and Santner (1981),
Moussa (1988), and Lachin and Foulkes (1986) provided formu-
las for complex designs with stratification, covariate informa-
tion, or allowances for loss of individuals to follow-up. In the
presentation that follows, we have computed minimum sample
sizes using the computer program of Dupont and Plummer.

No single table or formula can cover all possible design config-

urations. Here we provide ballpark estimates of sample size
similar to those we provided elsewhere for more familiar statis-
tical analyses (Light et al., 1990). Table 1 contains the minimum
total sample sizes necessary to achieve a power of .80 for a
simple two-group comparison at the .05 level (two-tailed). The
rows of the table indicate minimum detectable effect sizes (R);
the columns indicate the length of follow-up (F); the cell entries
indicate the minimum total sample size used in the analysis
(,V). Researchers should inflate these sample-size estimates ap-
propriately to adjust for cases lost to follow-up. These calcula-
tions were made assuming a flat hazard function, a restrictive
assumption indeed, but the simplest, and the one researchers
generally assume in the absence of more detailed information.

To use the table, the researcher must first specify the smallest
effect size deemed important for detection. Although biostatis-
ticians developed several measures of effect size, perhaps the
simplest is the ratio of median lifetimes in the two groups,
denoted by R. Letting m, be the median lifetime in one group
and m2 the median lifetime in the other, R = m,/w2. When R -
1.25, the median lifetime of one group is 25% longer than the
median lifetime of the other; when R = 1.50, the median life-
time of one group is 50% longer, when R = 2.00, the median
lifetime of one group is twice as long (100%) as the other group.4

How does a researcher specify the minimum detectable effect
size in advance of data collection? One way is to use prior re-
search. Consider a two-group experiment that might follow
from Stevens and Hollis's (1989) smoking study The median
survival time in the control group of this experiment was 4
months (TOJ = 4). If the median survival time in a new experi-
mental group is expected to be as high as 8 months (m, = 8), the
new study can be designed to detect an R of 2.00; if the median
survival time in the new experimental group is expected to be
only 6 months (m, = 6), the study should be designed to detect
an R of 1.50. In the absence of such prior information, Schoen-
feld and Richter (1982) suggested that R = 1.50 be used because
a 50% increase in survival is "clinically important and biologi-
cally feasible" (p. 163).

After specifying the minimum detectable effect size, the re-
searcher must specify the length of follow-up. Because the
length of follow-up can vary greatly across substantive do-
mains, we need a standardized measure applicable to a variety
of settings and metrics. We achieve this goal by dividing the
length of follow-up by the average anticipated median lifetime
in the two groups. More precisely, letting A = (m, + m2 )/2 be the
average median lifetime in the two groups and T be the total
length of follow-up, our standardized measure of follow-up, /?is
T/A. If a study follows individuals to only half the average me-
dian lifetime, F= 0.5; if a study follows individuals to the aver-
age median lifetime, F= 1.0; if a study follows individuals for
twice as long as the average median lifetime, F = 2.0.

By using a standardized measure of the length of follow-up,
the table can be used with studies of widely varying length. It is

* For readers who prefer to think in terms of ultimate percentage
surviving, an R of 1.50 corresponds to an improvement in survival
from 50% to 63%, from 25% to 40%, or from 10% to 22%. An R of 2.00
corresponds to an improvement from 50% to 71 %, from 25% to 50%, or
from 10% to 32% (Freedman, 1982).
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Table 1

Minimum Total Number of Individuals Needed to Detect

Differences in Survival Between Two Groups

Follow-up period

Effect size 0.5 1.0 1.5 2.0 2.5

1.25
1.50
1.75
2.00

>2,162
654
344
224

1,260
382
200
130

976
296
156
102

840
254
134
88

766
232
122
80

Note. We have assumed a two-tailed test at the 0.05 level, power of
0.80, exponentially distributed survival times, and all individuals fol-
lowed for the same period of time.

equally applicable if the average median lifetime is 6 min, 6

days, 6 months, or 6 years. If the average median lifetime (A) is 6

(in any of these units), a follow-up (T) of 3 yields an Fof 0.5, a

follow-up of 6 yields an Fof 1.0, a follow-up of 9 yields an Fof

1.5, and a follow-up of 12 yields an Fof 2.0. The particular time

units cancel each other out in the standardization.

We now examine the minimum sample sizes presented in

Table 1, focusing first on differences in effect size displayed

across the rows. Small effects (R = 1.25) are difficult to detect.

Regardless of the length of follow-up, a study must include

many hundreds or well over 1,000 individuals to have a reason-

able chance of detecting such effects. Medium-sized effects (R =

1.50-1.75) can be detected with moderate-sized samples; some-

where between 200 to 400 individuals will generally suffice,

depending on the length of follow-up. Large effects (R = 2.00)

are relatively easy to detect, even using small samples. If the

median lifetime in one group is twice as long as the median

lifetime in the other, the researcher has an 80% chance of de-

tecting this difference using only 100 to 200 individuals.

Table 1 can also be used for another purpose: to decide on the

length of data collection. Reexamine the table, focusing now on

the variation in sample sizes across the columns, corresponding

to follow-ups of widely differing lengths. The great variation in

minimum sample sizes for a given effect size emphasizes the

importance of following individuals under study for as long as

possible.

Consider, for example, how the minimum sample size

needed to detect an R of 1.50 depends on the length of follow-

up. If a researcher follows a sample only halfway to the average

median lifetime, F= .50; such a study would require 654 people

to detect the 50% difference in median lifetimes. If the re-

searcher follows people for longer periods of time, however,

fewer people are needed. If the follow-up extends to the average

median lifetime (F = 1.00), the same power of .80 can be

achieved with almost half as many individuals (N= 382). If the

follow-up is extended further to twice the average median life-

time (F = 2.00), the same power can be achieved with only a

third as many individuals (N = 254).

The message for research design is clear. Much statistical

power can be gained by following people for longer periods of

time. Researchers would do well to follow people for at least as

long as the average median lifetime (F = 1.00). By doubling the

length of follow-up, the researcher can achieve the same statisti-

cal power with approximately 33% fewer individuals. If the

length of follow-up is less than the average median lifetime,

only studies of many hundreds of individuals will have ade-

quate statistical power.

Analysis: Examining Survival Data

Most researchers begin data analysis with exploratory and

descriptive approaches; they move on to fining statistical mod-

els and testing hypotheses only after a full exploration of the

data (Ehrenberg, 1982; Mosteller & Tukey, 1977). In the follow-

ing sections, we present a broad array of strategies for analyzing

survival data, beginning with descriptive approaches and mov-

ing on to model building.

Describing Survival Data

Analysis of survival data typically begins with an examina-

tion of the sample survivor and hazard profiles and the compar-

ison of these profiles computed separately for subsamples of

individuals sharing characteristics of substantive interest. We

illustrate these approaches using data reported by Telles and

Spreat (1985), who studied discharge patterns among 404 men-

tally retarded residents of a short-term rehabilitation facility.

The authors asked when residents were referred for discharge

and whether time to referral differed by the residents' level of

retardation. After computing an estimated median time to dis-

charge of 3.2 years, the authors examined variation in referral

time by displaying estimated hazard rates according to the resi-

dents' level of retardation. The bottom panel of Figure 3 con-

tains hazard profiles for two of the resident groups: those with

mild and severe retardation. The top panel contains the corre-

sponding sample survival profiles we reconstructed from Telles

and Spreat's data.

Sample survivor and hazard profiles contain a great deal of

information. Examining the sample survivor profiles by retar-

dation level shows that mildly retarded residents have better

long-term cumulative prospects for referral than do severely

retarded residents. About half the mildly retarded residents are

referred for discharge within 2 to 3 years of admission; severely

retarded residents wait a year longer on average.

The subsample hazard profiles disentangle these referral pat-

terns year by year and provide a more sensitive magnifying

glass for identifying when clients are likely to be referred.5 Im-

mediately after moving into the facility, the risk of referral rises

as clients improve. After a few years, however, the risk of re-

ferral declines. In every year, the hazard for mildly retarded

residents is higher than that for severely retarded residents, in-

dicating that the former group is more likely to be referred for

discharge at all times.

When we compare hazard profiles for the two groups of

people, we implicitly treat level of retardation as a predictor of

the entire hazard profile. The profile comparison shows how

s It may seem inappropriate to use the foreboding term risk to de-
scribe referral for discharge rather than the less emotive term chance

used by the study's authors. We use risk to avoid possible confusions
over the meaning of chance and to be consistent with usage in the
current article and the research literature.



278 JUDITH D. SINGER AND JOHN B. WILLETT

Survival Probability

Hazard

0.35
Mild

Figure 3. Sample survivor (top) and hazard (bottom) functions for

mildly and severely retarded residents based on data reported by Telles

and Spreat (1985).

risk of referral is related to retardation. We could divide the
sample in other ways and treat these divisions as predictors of
hazard as well. Telles and Spreat (1985), for instance, tabulated
hazard by year of admission and asked whether the time to
referral depends on entry cohort.

Within-group survivor and hazard profiles provide simple
persuasive descriptions of when events occur and how timing
patterns vary across groups (Lawless, 1982; Lee, 1980). But
graphical displays cannot answer complex research questions.
Continuous predictors would yield a cumbersome collection of
profiles: one per predictor value. These methods are ill-suited
for exploring the effects of several predictors simultaneously, for
evaluating the influence of interactions among predictors, and
for making inferences about the population from which the
sample was drawn.

Ryan and Dent (1984) illustrated these limitations in their
study of the relationship between the duration of infant breast-
feeding and two dichotomous predictors: maternal employ-
ment (employed vs. unemployed) and high or low socioeco-
nomic status (SES). After displaying survival profiles separately
by employment status and SES, the authors explored both vari-
ables simultaneously by presenting four survival profiles (un-
employed-high SES, unemployed-low SES, employed-high SES,
employed-low SES). Were Ryan and Dent to add other predic-
tors, or if these predictors were measured more precisely, the
number of subsamples would rise multiplicatively, and their abil-
ity to estimate survivor profiles would decline as the number of
subjects in each subgroup plummeted. Clearly, a more compre-

hensive approach is needed, and building statistical models of
hazard offers one such strategy.

Building Statistical Models of Hazard

We represent the relationship between the hazard profile and
predictors statistically in much the same way as we represent
the relationship between noncensored outcomes and predictors
in ordinary regression models. But because the outcome of
interest is an entire continuous function, not just a conditional
mean, hazard models are somewhat more complex concep-
tually To illustrate the construction of a hazard model, we pro-
ceed heuristically by examining the two sample hazard profiles
displayed in the bottom panel of Figure 3 and developing a
population model that captures the relationship between the
predictor (RETARDATION) and the outcome (the entire hazard
profile).

We begin developing the model by replotting the two sample
hazard profiles using a logarithmic transformation (Figure 4).
In our model, we use a logarithmic transformation of hazard
because untransformed hazard is bounded (it takes on only
nonnegative values). To build a statistical model using a
weighted linear combination of predictors (see Equation 1 later),
an outcome's range should be unbounded (Mosteller & Tukey,
1977). When time is measured discretely, a logit transformation
is used for the same reason.

Now we seek a representation of the relationship between the
entire log-hazard profile and the predictor. Ignoring minor dif-
ferences in shape, we see that in the sample the predictor RE-
TARDATION essentially displaces the two risk profiles vertically
relative to each other. When RETARDATION = 0 (mild), the log-
hazard function is consistently higher relative to its location
when RETARDATION = 1 (severe), indicating that, at every possi-
ble time among those residents who have not yet been referred,
those who are mildly retarded have a greater risk of referral.
Letting h(t) represent the entire population hazard profile, we
express this vertical displacement by relating the logarithmic

Log-Hazard

Mild

Severe

-1

-2

-3

-4

Figure 4. Sample log-hazard functions for mildly and severely re-

tarded residents based on data reported by Telles and Spreat (1985).
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transformation of the hazard profile to the predictor RETARDA-
TION as follows:

log h(t) = ft,(0 + ^RETARDATION. (1)
ft,(f) is called the baseline log-hazard profile. It represents the

value of the outcome (the entire log-hazard function) in the
population when the predictor (RETARDATION) is 0. We write
the baseline as ft,(f), a function of time, and not as ft,, a single
term unrelated to time (as in regression analysis), because the
outcome itself, log hlfi, is an entire temporal profile. The model
specifies that differences in the value of RETARDATION shift this
time profile of log-hazard up or down. The slope parameter, ft,
captures the magnitude of this shift; it represents the vertical
shift in log-hazard attributable to a one-unit difference in RE-
TARDATION. Because RETARDATION is a dichotomy coded 0 and
1, ft captures the difference in the risk of referral between the
mildly and severely retarded groups; because severely retarded
residents have a lower risk of referral, in this example, ft will be
negative.

Hazard models such as Equation I closely resemble familiar
regression models. Several predictors can be included by add-
ing other variables expressed as linear functions of additional
unknown slope parameters on the right side of the equation.
This model expansion allows researchers to examine one pre-
dictor's effect while controlling statistically for others'. Inclusion
of cross-product terms enables examination of statistical inter-
actions between predictors. Had Ryan and Dent (1984) built
models of the hazard of breastfeeding cessation, for instance,
they would have used three predictors: maternal employment,
SES, and the interaction between the two.

Hazard models provide a powerful, flexible, and sensitive
approach to survival analysis, subsuming the exploratory graph-
ical approaches described earlier. The goodness of fit of a hy-
pothesized population model can be evaluated with data, al-
lowing inferences about population relationships between haz-
ard and predictors. And as we show later, reconstructed
survivor and hazard functions and estimated median lifetimes
can depict the effects of predictors, providing answers to re-
search questions in the original metric of interest: time.

Proportional Versus Nonproportional Hazards

Hazard models like Equation 1 implicitly assume that all the
log-hazard profiles corresponding to successive values of a pre-
dictor differ only by their relative elevation (described here by
ft). Under such models, but in the antilogged world of raw
hazard, all the hazard profiles are simply magnifications or
diminutions of each other: They are proportional. Under this
proportional hazards assumption, implicit in Equation 1, the
entire family of log-hazard profiles represented by all possible
values of the predictors share a common shape and are mutu-
ally parallel. Willett and Singer (1988) drew an analogy between
this assumption and that of homogeneity of regression slopes in
the analysis of covariance.

Proportional hazards models have become popular in psy-
chology in part because many statistical packages now provide
programs (PHGLM in SAS, BMDP 1L) for estimating their
parameters using a method developed by Cox (1972). This inge-
nious strategy allows estimation of parameters like ft without

consideration of the shape of the baseline hazard function, 00(')-
For this reason, analogous to nonparametric methods (which
make no underlying distributional assumptions), Cox regres-

sion is called semiparametric. Proportional hazards modeling
is the most frequently used type of survival analysis in psycho-
logical research, having been applied to topics such as smoking
relapse (Stevens & Hollis, 1989), affective disorders (Shapiro et
al. 1989), childhood family breakdown (Fergusson, Horwood,
& Dimond, 1985; Fergusson, Horwood, & Shannon, 1984), in-
terruptions in conversation (Drass, 1986), employee turnover
(Morita et al_ 1989), and employee absences (Harrison & Hulin,
1989).

The tremendous boon of the semiparametric method—aris-
ing from its ability to evaluate effects of predictors independent
of the shape of baseline hazard profile—leads to a marked dis-
advantage, however. The method is so general that it works for
an unspecified baseline hazard profile of any shape. Without
needing to explore the baseline hazard, many investigators ex-
amine effects of predictors without exploring overall levels of
risk (see, e.g., Heckert & Teachman, 1985; Moen, Dempster-
McClain, & Williams, 1989). Because the baseline hazard func-
tion can be easily ignored, researchers may fail to recognize
substantively and statistically important information contained
only in the shape of the baseline hazard function.

What kinds of information can be found? The baseline haz-
ard function and, under the proportional hazards assumption,
its magnified and diminished cousins describe the pattern of
risk over time; it tells us when the target event is most likely to
occur. The hazard profiles in Figure 3, for example, show that
residents are at greatest risk of referral for discharge in the 3rd
and 4th years after admission. All the predictor does is magnify
or diminish this pattern.

The ease with which hazard functions themselves can be ig-
nored has had further ill consequence: It has promoted un-
thinking and dubious acceptance of the proportional hazards
assumption. It is all too easy to examine effects of predictors
without examining the tenability of the underlying propor-
tional hazards assumption. Notice, for example, that the sam-
ple log-hazard profiles in Figure 4 are neither identical in shape
nor parallel, suggesting that the proportional hazards assump-
tion might be untenable.

Researchers should be especially circumspect about the tena-
bility of the proportional hazards assumption; estimated effects
of predictors may be wrong if the adopted model incorrectly
constrains the log-hazard profiles to be parallel with identical
shapes. Ignoring such underlying failures can lead to incorrect
substantive conclusions. Indeed, in our own empirical research
on employee turnover, we have found that violations of the
proportional hazards assumption are the rule, not the excep-
tion (see, e.g., Murnane et al., 1989,1991; Singer, in press; Singer
& Willett, in press). Other researchers documented similar vio-
lations. In a study of child mortality, for example, Trussel and
Hammerslough (1983) documented differences in interpreta-
tion that arise when the proportional hazards assumption is
injudiciously assumed tenable (compare their Tables 3 and 4,
particularly the effects of gender, birth order, and age of mother
at birth). Violations of the proportional hazards assumption
have been detected in other substantive areas as well, including
the age of onset of suicide ideation (Bolger et al., 1989) and the
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length of time to a change of opinion (Hembroff & Myers,

1984).

So pervasive is the widespread acceptance of the propor-

tional hazards assumption that we now begin our own data

analyses with the entirely opposite view: Along with unicorns

and normal distributions (Micceri, 1989), we regard the pro-

portional hazards assumption as mythical in any set of data

until proved otherwise. Before adopting a proportional hazards

model, researchers should, at a minimum, subdivide the sam-

ple by values of predictors and compare the shapes of the haz-

ard profiles within groups. Arjas (1988), Kalbfleisch and Pren-

tice (1980), Harrell and Lee (1990), and Willett and Singer

(1988) provided methods for exploring the tenability of the as-

sumption. And as we discuss later, researchers can adopt a

broader analytic approach, one that facilitates the statistical

testing of the proportional hazards assumption and permits the

fitting of nonproportional hazard models if necessary.

Different "types of Predictors That Can Be Included in

Hazard Models

Hazard models can simultaneously include either or both

time-invariant and time-varying predictors. As befits their la-

bel, time-invariant predictors describe immutable characteris-

tics of individuals; the values of time-varying predictors, in

contrast, may fluctuate with time. When building hazard mod-

els of the risk of premarital pregnancy, for example, Yamaguchi

and Kandel (1985a) included time-invariant predictors (e.g.,

race, father's education, prior history of school absences) and

time-varying predictors (e.g, illicit drug use, current school at-

tendance) and found that "women who currently use drugs. . .

are about twice as likely as women who never used these drugs

to experience a premarital pregnancy" (p. 262). These authors

also used hazard models to study the links between time-vary-

ing drug consumption and the risk of job turnover (Kandel &

Yamaguchi, 1987).

The hazard model in Equation 1 includes a single time-invar-

iant predictor: RETARDATION. The information captured by

this predictor—mild or severe retardation—remains constant

over time. 0, quantifies the time-invariant effect of this time-in-

variant predictor on the risk of referral. Hazard models like

Equation 1 can be extended to include time-varying predictors.

Such extensions can be particularly helpful to psychological

researchers studying predictors that vary naturally over time.

Hazard models with time-varying predictors closely resem-

ble the model in Equation 1. In Yamaguchi and Kandel's

(1985b) study of the risk of premarital pregnancy, for example,

one possible population hazard model might include time-in-

variant RACE (authors' coding: 0 = not Black, 1 = Black) and

time-varying DRUG USE (0 = not currently using, 1 = currently

using) as follows:

log Uf) = ft,(0 + ftRACE + &DRUG USE(/). (2)

The parenthetical / in the predictor DRUG USE(J) indicates that

the values of this predictor may vary over time. Unit differences

in DRUG USE correspond to shifts in the log-hazard profile of ft.

Although the values of the predictor DRUG USE may differ over

time, each one-unit difference anywhere produces the same

shift of ft in the appropriate part of the log-hazard profile. So

although the model includes a time-varying predictor, the per-

unit effect of that predictor on log-hazard is constant over time.

Another way to understand the effects of time-varying pre-

dictors is to conceptually regard the outcome in Equation 2—

the log-hazard profile—as a temporally sequenced list (a vector)

of premarital pregnancy risks. The predictors also can be

viewed as an ordered list of values that for each woman de-

scribe the values of RACE and DRUG USE over time. Each ele-

ment in the hazard list corresponds to an element in each pre-

dictorls list. For a time-invariant predictor such as RACE, all

elements in each woman's predictor list are identical: 1 for every

person who is Black, 0 for every person who is not. For a time-

varying predictor such as DRUG USE, in contrast, the values in

the predictor list may differ across occasions. If a woman does

not use drugs initially, the early elements in the DRUG USE vec-

tor are 0; when drug use begins, the values change to 1. If drug

use persists, the values stay at 1; if it ends, the values revert to 0.

Each woman has her own drug-use pattern: The number of

patterns across women is limited only by the number of possi-

ble states and occasions. The hazard model simply relates the

values in one list (the hazard vector) to the values in the other

(the predictor vector) regardless of whether the elements in the

latter list are identical.

Time itself is the fundamental time-varying predictor. So

conceptually at least one might argue that it too should be in-

cluded as a time-varying predictor in Equation 2, mapping in-

trinsic changes in the risk of pregnancy over time. Although

intuitively appealing, this approach produces complete redun-

dancy in the model because this time-varying effect is already

captured by the baseline log-hazard function, &>(«)• /30(') de-

scribes the chronological pattern of baseline risk: The differ-

ences in log-hazard attributable solely to time. Estimation of

the baseline hazard function is tantamount to estimation of the

main effect of time. This analogy reinforces the need to exam-

ine the shape of the baseline hazard because it provides infor-

mation about the effects of the fundamental time-varying pre-

dictor: time itself.

Interactions Between Predictors and Time

Not only can predictors themselves be time invariant or time

varying, but their effect on hazard can be constant or vary over

time as well. By including a main effect of the time-varying

predictor DRUG USE in Equation 2, we assume that the vertical

displacement associated with drug use is the same at ages 16

and 24 (and equal to ft).

The assumption of temporally immutable effects may not

hold in reality: The effects of some predictors will vary over

time. The impact of drug use on the risk of pregnancy might

decline as women mature and become less susceptible to peer

pressure. If so, the distance between the log-hazard profiles

associated with different values of the predictor DRUG USE

would narrow as time passes (and women mature).

When the effect of one predictor on an outcome differs by

levels of another predictor, statisticians say that the two predic-

tors interact. If the effect of a predictor like DRUG USE differs

across time, we say that the predictor interacts with time. Pre-

dictors that interact with time have important substantive inter-

pretations, allowing researchers to build complex models of the
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relationship between predictors and risk. If a predictor primar-
ily affects early risks, the hazard profiles will be widely sepa-
rated in the beginning of time and converge as time passes. If a
predictor primarily affects late hazards, it will have little effect
at the beginning of time, but will widen the distance between
hazard functions on each subsequent occasion.

Much information about human behavior can be learned by
exploring whether the effects of predictors are constant or vari-
able over time. In their study of the age at first suicide ideation,
Bolger et al. (1989) detected interactions between two predic-
tors and time. Dividing time into two broad periods—adoles-
cence and preadolescence—they found that the effects of both
respondent race and parental absence in childhood differed
across these periods. With regard to race, they found that dur-
ing preadolescence Whites were less likely to consider suicide
than non-Whites, but during adolescence they were more likely
to do so; with regard to parental absence, they found that during
preadolescence children who experienced a parental absence
were more likely to consider suicide than those who did not
experience such absence, but during adolescence parental ab-
sence had little impact on the risk of suicidal thought. Including
interactions between predictors and time allows researchers to
more accurately characterize the predictors of risk.

If a predictor interacts with time, the proportional hazards
assumption is violated, and proportional hazards models do
not represent reality Although few researchers to date have ex-
plored the possibility of such interactions, those who do often
find that they are pervasive. When evaluating the decision-
making process in informal task groups, for example, Hem-
broff and Myers (1984) found an interaction between time and
the status characteristics of participants. They demonstrated
the extent of the violation by displaying the dramatically non-
proportional fitted hazard functions obtained in each of four
treatment groups (see their Figure 3, p. 345).

The proportional hazards assumption is easily tested by add-
ing to the model an interaction with time and assessing the
effect of this new predictor. If the proportional hazards as-
sumption is not violated, the interaction term can be removed.
If a violation is detected, the interaction with time remains in
the model to ensure the appropriate estimation of predictor
effects (see Singer & Willett, in press). We recommend that
researchers routinely examine such interactions in hazard mod-
els, just as they would routinely examine interactions among
other predictors in traditional linear models.

Competing Risks

All these examples assume that each individual can occupy
only one of two possible states. Survival methods can also be
extended to situations where each individual can occupy one of
several states. This methodology, known as competing-risks sur-
vival analysis, can handle an unlimited number of states. The
only requirement is that the multiple states be mutually exclu-
sive and exhaustive.

We illustrate the competing-risks methodology by referring
back to Zatz's (1985) study of the final case dispositions of juve-
niles arrested in Phoenix, Arizona. After arrest, each juvenile's
case can be disposed of in one, and only one, of five ways: (a)

dismissal; (b) informal processing; (c) probation; (d) commit-
ment to the Department of Corrections (DOC); or (e) remand
to adult court. Initially, each juvenile is at risk of every mode of
disposition; after disposition by any particular mode, the juve-
nile is no longer at risk of any of the other modes (for this arrest
episode). Dismissed offenders cannot be put on probation;
those remanded to an adult court cannot be informally pro-
cessed as juveniles. The five modes of disposition, then, are
unique events that compete with each other to terminate the
time between arrest and case disposition. Juveniles whose cases
are disposed of by one method are protected against the others.

Many psychological phenomena lend themselves to a com-
peting-risks formulation. This methodology is appropriate
whenever the individuals under study are at risk of several mutu-
ally exclusive events. Lives end by one of many competing dis-
eases or by accidents (Cox & Oakes, 1984). Employees leave
their jobs voluntarily or involuntarily (Hachen, 1988; Singer &
Willett, 1988; Sorenson, 1977). Adults not working can be un-
employed or out of the labor force (Flinn & Heckman, 1982).
Students leave school by graduating or by dropping out (Willett
& Singer, in press). Patients completing psychotherapy can stay
well, have a relapse, or have a new episode (Gallagher-Thomp-
son et al., 1990). Even study attrition can be analyzed through a
competing-risks formulation (Tuma & Hannan, 1979).

In competing-risks survival analysis, the researcher models
the risk of each event separately. In this way, the predictors of
risk can differ depending on which of the several competing
events eventually occurs. Zatz (1985), for example, argued that
the risk profiles for each method of case disposition might
differ depending on the offender's age at arrest: First offenders
and young offenders would be handled leniently, whereas older
offenders would be remanded to adult court.

After modeling the risk profiles for each event separately, the
researcher then assembles a global profile. Although several
computer programs (e.g, RATE; Tuma, 1986) can conduct the
calculations simultaneously, these models also can be estimated
with standard survival analysis software. The idea is to conduct
as many separate analyses as there are states; when studying the
five possible modes of case disposition, we would conduct five
concurrent analyses. However, the separate analyses are not
conducted in separate subsamples—one per event type—as
might be anticipated. Instead, all cases are included in every
analysis, with modified definitions of censoring accounting for
the competing risks.

We outline the strategy briefly using Zatz's (1985) example.
Begin with juveniles given probation. When studying proba-
tion, their time to probation is recorded appropriately. When
studying the other four modes of disposition—dismissal, infor-
mal processing, commitment to DOC, and remand to adult
court—their time to disposition is censored at the time of pro-
bation. Why? Because after being given probation, the juvenile
is not at risk of these four competing events. Redefining censor-
ing similarly for each of the other four events, we estimate five
sets of hazard models. After identifying predictors of hazard for
each event separately, we recombine the component-risk pro-
files to create the overall risk profile for all the events taken
together. Allison (1984) and Hachen (1988) provided further
details.
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Repeated Spells

As described earlier, some events can recur many times dur-

ing an individual's lifetime. When analyzing data that may in-

clude repeated spells, researchers must take special care be-

cause subsequent spells may not be independent replications of

the initial spell. Zatz (1985), for example, found that the dispo-

sition of first offenders differed from that of repeat offenders.

Similarly, Lavori et al. (1984) found that the risk of relapse into

depression was greater in cohorts with more prior episodes of

depression.

Repeated spell data can often be analyzed spell by spell. This

is easiest in prospective studies that follow a sample of individ-

uals over time, allowing observation of the target event when-

ever it occurs. Each individual's lifetime can be divided into the

separate spells—the first, the second, and so on—and hazard

models of each spell built separately (see, e.g., Murnane et al,

1989).

Spell-by-spell analyses are not always feasible, however, For

example, although Zatz (1985), in her study of juvenile of-

fenders, wanted to analyze each arrest spell separately—all first

arrests, all second arrests, and so on—she could not do so be-

cause too few juveniles experienced these later spells. Instead,

she pooled the repeated-spell data together in a single analysis

and used number of prior spells as a continuous predictor of

risk. (Alternatively, she could have represented spell number

using a system of dummy variables.) Judicious inclusion of

terms capturing interactions between the spell variables and

both time and other predictors can account for differences in

the baseline hazard profile and variation in predictor effects

from spell to spell.

Although attractive in its simplicity, we believe that such a

combined-spells approach is inherently flawed. Why? Because

the models fitted do not explicitly link each person's repeated

spells. This omission may exaggerate degrees of freedom and

lead to underestimates of the standard errors of the parameter

estimates. Recognizing this limitation, Fichman (1988, 1989)

and Harrison and Hulin (1989) went to the other extreme; they

randomly selected a single spell for each individual when model-

ing employee absences. This strategy is also flawed, however,

because it sets aside large amounts of information, thereby re-

ducing statistical power.

For these reasons, we recommend caution when interpreting

analyses based on repeated-spell data. This limitation may have

severe consequences for researchers who use survival methods

to study social interactions where each individual or dyad gener-

ates many spells of information, and this information is pooled

together in a single analysis (Felmlee & Eder, 1983; Gardner &

Griffin, 1989; Griffin & Gardner, 1989). Researchers who col-

lect data that include large numbers of repeated spells may find

it more appropriate to refocus their research questions on the

probability of transitions between states so that the power of

Markov modeling can be brought to bear (see Wickens, 1982).

Discrete-Time Survival Analysis

The models posited previously assume that time can take on

any nonnegative value and represent the baseline hazard as a

continuous function of time, ft((). But many researchers collect

data in discrete time, either because the events only occur or are

only measured at specific times: every week, month, semester,

or year. For example, when McLanahan (1988) used the Panel

Study of Income Dynamics to examine whether and when ado-

lescent girls moved out of their parents' house and became

heads of households in their own right, she could not precisely

determine the transition dates. She knew each girl's status

(household head or not) only on a year-by-year basis.

Proportional and nonproportional hazards models can be

used to analyze such discrete-time data using a modification of

logistic regression known as discrete-time survival analysis. This

methodology is developed and described elsewhere (Allison,

1982; Efron, 1988; Laird & Olivier, 1981); Guilkey and Rind-

fuss (1987) and McLanahan (1988) illustrated its application.

Discrete-time survival analysis is easy to apply, facilitates the

estimation of the baseline hazard function, encourages the test-

ing of the proportional hazards assumption, and enables re-

searchers to fit hazard models using procedures available in

most statistical computer packages. For all these reasons, we

encourage its wider application to studying questions about

time.

Before using logistic regression to conduct a discrete-time

survival analysis, the researcher alters the data structure, trans-

forming the standard one-person, one-record data set (the per-

son data set) into a one-person, multiple-period data set (the

person-period data set). Figure 5 illustrates this conversion in a

hypothetical data set based on McLanahan's (1988) study; it

presents data for three adolescent girls; data collection began

when the girls were 16 and continued until they either turned 26

or became a head of household or when data collection ended.

The original person data set records each girl's data in a single

line. The two variables, "HOHAGE" and "CENSOR," describe

whether and if so, when the girl became a head of household.

For Subjects 1 and 3, who are not censored (CENSOR = 0), HOH-

ACE contains the age at which the girl actually became a head of

household; for Subject 2, who is censored (CENSOR = 1), HOH-

AGE contains the age at which data collection ended. The time-

invariant predictor BLACK records her race (0 = not Black, 1 =

Black); the time-varying predictor SES describes her parent's SES

(1 = low SES, 4 = high SES). Time-varying predictors like SES,

which may take on different values in each data collection pe-

riod, are represented by a series of variables, one per year of

data collection (SES, b through SES^S). For data collection periods

after the transition to household head, or after the end of data

collection, the annual SES descriptors are missing (denoted

by".").

The records in the reconstructed person-period data set note

what happened to each girl during each discrete-time period

when the event of interest could have occurred, until it did

occur, or until data collection ended (whichever comes first). In

this example, this yields one record per year per person. If the

event occurred during data collection, the girl became a head of

household at the age recorded, and the case is not censored.

Subject 1, who became a head of household at age 18, has re-

cords for ages 16,17, and 18. Subject 3, who became a head of

household at age 23 has eight records, one for each year be-

tween age 16 and age 23. Censored cases did not become a head

of household during the data collection period. Subject 2, who
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Original Person Data Set

ID

01
02

03

HOMAGE

18

21

23

CENSOR

0

1

0

BLACK

1

1

0

SES,6

3
1

3

SES17

3
1

3

5»18

3

2

3

SES19 SESjo SESj, SESj,, SESj.

2 2 2 . .

3 4 4 4 4

j SES24 SESjB SESje

Converted Person-Period Data Set

ID

01

01

01

02

02

02

02

02

02

03

03

03

03

03

03

03

03

">1.

1

0

0

1
0

0

0

0

0

1
0

0

0

0

0
0

0

"17

0

1
0

0
1
0

0

0

0

0

1
0

0

0
0

0

0

DIB

0

0
1

0

0

1
0

0
0

0

0

1
0

0

0

0

0

D19

0

0

0

0

0

0

1
0

0

0

0

0

1
0

0

0

0

°20

0

0

0

0
0

0

0

1
0

0

0

0

0
1
0

0

0

°21
0

0

0

0

0

0

0

0

1

0

0

0

0

0
1
0

0

°22

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0
1
0

°23

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

1

"24

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

°25

0
0

0

0
0

0

0

0

0

0

0

0

0

0
0

0

0

D26

0

0

0

0

0
0

0

0

0

0

0

0

0
0

0

0
0

BUCK

1
1
1

1
1
1
1
1
1

a
0

0

0

0
0

0

0

SES HOUSEHEAD

3

3

3

1
1
2

2

2

2

3

3

3

3
4

4

4

4

0

0
1

0

0

0

0

0

0

0

0

0

0

0
0

0

1

Figure 5. Transforming a person data set into a person-period data set. (HOHAGE = age at which girl

became head of household or when data collection ended; CENSOR = whether or not girl was censored, 0=

not censored, 1 = censored; BLACK = girl's race, 0 = not Black, 1 = Black; SES=socioeconomic status of girl

from age 16 to age 26; D = dummy variable for discrete-time intervals from 16 to 26; HOUSEHEAD =

whether the girl became head of household in each particular year, 0 = no, 1 = yes.)

was 21 when lost to follow-up, still was not a head of household;
she therefore has six records, one for each of the ages 16,17,18,
19, 20, and 21.

Each person-period record contains period-specific values
of three different types of predictors: (a) the age indicators,
dummy variables D16 through ZJ26, specifying the discrete-time
interval to which the record refers; (b) the time-invariant pre-
dictor, BLACK, whose values are constant across records for
each person; and (c) the time-varying predictor, SES, whose val-
ues may fluctuate from year to year.

The person-period data set also includes a new outcome vari-
able—here called HOUSE HEAD—that indicates whether the
young woman became a head of household in that particular
year. If she did not, HOUSE HEAD = 0; if she did, HOUSE HEAD=
1. Girls who never became household heads during the study
are censored, and so for them HOUSE HEAD = 0 in every record,
even the last (as for Subject 2). Girls who became household
heads during the study are not censored, and so for them,

HOUSE HEAD = 1, but only in the year that the transition oc-
curred: age 18 for Subject 1, age 23 for Subject 3.

In discrete-time survival analysis, a researcher uses the per-
son-period data set to model the relationship between the oc-
currence of the event of interest (becoming head of household)
and the selected predictors. Because the outcome—HOUSE
HEAD—is dichotomous, logistic regression is used to model the
log-odds of becoming a head of household. Such estimation of
discrete-time hazard models eliminates the need for dedicated
software. Allison (1982) described this process using a worked
example (see also Laird & Olivier, 1981). Willett and Singer
(1991; Singer & Willett, in press) presented computer code (in
SAS) for transforming the data set, fitting models, and recon-
structing fitted hazard and survivor plots from parameter esti-
mates.

A discrete-time population hazard model expressing the risk
of becoming a head of household in terms of the main eflect of
BLACK is the following:
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logit h(t)

= (S16 + 817£>17 + 818D18 + • • • + S26D26] + 0.BLACK. (3)

The baseline hazard, once a continuous function of time, /S0(f),
is now a step function of time, a weighted linear combination of
the age indicators [616 + &nDtl + 5ltDlt + -• + S26D26 ]. Omitting
one age indicator (here D16) prevents complete linear redun-
dancy; the logistic regression parameters 8,, through 8^ mea-
sure deviations of the baseline logit-hazard from an initial value
of 8,6.

Logistic regression parameter estimates, standard errors,
and goodness-of-nt statistics generated by predicting the dichot-
omous outcome HOUSE HEAD using the time indicators and
predictors are exactly those required for testing hypotheses
about hazard. Allison (1982) demonstrated that these estimates
are "consistent, asymptotically efficient, and asymptotically
normally distributed" and that, despite the apparent inflation
of sample size on creation of the person-period data set, the
estimated standard errors are consistent estimators of the true
standard errors (p. 82; see also Singer & Willett, in press). So, as
with continuous-time models, the estimate of ft quantifies the
relationship between the girl's race and her risk profile. Esti-
mates of the 5's lead to fitted hazard probabilities for each dis-
crete time period and allow reconstruction of fitted hazard and
survivor plots. In an extensive investigation of the convergence
of discrete- and continuous-time survival methods, Efron
(1988) showed that the estimated survival profiles recovered
from logistic regression estimates approach the well-known
Kaplan-Meier estimates as the overall time interval is more
finely discretized. He demonstrated, in addition, that the infor-
mation loss on discretization is inversely related to the square of
the number of discrete intervals and therefore declines rapidly
to zero with increasing discretization.

Interactions among predictors, and between predictors and
the time indicators, are included by forming cross-products in
the person-period data set and using them as predictors (Singer
& Willett, in press). Adding these interactions facilitates easy
testing of the proportional hazards assumption and, if the as-
sumption is violated, retention of the interactions in the fitted
model ensures the appropriate estimation of effects.

Interpreting Fitted Models

Statistical models are of little use unless a researcher can
interpret and present them clearly and persuasively. Interpreta-
tion includes at least three components: identification of statis-
tically significant effects, computation of numerical summaries
of effect size, and graphic display of the magnitude and direc-
tion of effects. These three components have direct analogues
in traditional methods. When conducting an analysis of vari-
ance, for example, researchers might first determine whether
the difference in average outcome between two groups is statis-
tically significant. If it is, they might then express one group's
advantage in standard deviation units, and provide data plots
comparing the distribution of the outcome across groups.

All three components play an important role in data analysis.
But because hazard models may be difficult to grasp, relating as
they do to variations in entire hazard profiles, we believe that
graphical techniques may provide the best medium for under-

standing and reporting findings. As the figures in this article
demonstrate, graphics can help communicate complex and un-
familiar ideas about whether an event occurs and if so, when.
\et even the most effective graphical displays must be sup-
ported by documentation of parameter estimates and asso-
ciated standard errors. So we begin our discussion of interpre-
tation with the computer output commonly generated by statis-
tical packages.

Computer output documenting the results of fitting hazard
models closely resembles output documenting the results of
other statistical techniques. Most programs output estimates of
slope parameters, standard errors of these estimates, ratios of
each parameter estimate to its standard error (a t statistic), and a
p value based on the ( statistic for testing the null hypothesis
that the corresponding parameter is zero in the population
(given that the other predictors are in the model). Some pro-
grams output a x2 statistic in lieu of a t statistic; the accompany-
ing p value assesses the improvement in fit resulting from add-
ing the predictor to a reduced model containing all the other
predictors.

Researchers seeking predictors having a statistically signifi-
cant relationship with hazard often focus primarily on p values.
Adopting a suitable a level (perhaps adjusting for the multiple
tests performed), they tick off those predictors whose p values
beat (i.e., are smaller than) the target value. Although simple and
straightforward, we discourage this strategy: It provides no in-
formation on the relative sizes and directions of effects, and it
fails to address the more important question, "What is the rela-
tionship between the predictor and risk?"

Because hazard models represent relationships between
transformations of entire hazard profiles and predictors, an-
swering this question is complex. But after learning how to
interpret these complex outcomes (log-hazard profile and logit-
hazard profile), parameter estimates associated with predictors
can be interpreted similarly to regression coefficients. Depend-
ing on whether a continuous or discrete-time model has been
fit, the parameter estimates represent the difference in eleva-
tion of the log- or logit-hazard profiles corresponding to predic-
tor values one unit apart. We find it helpful to imagine the
profile on a log- or logit-hazard plot moving up (or down if the
estimate is negative) for a one-unit difference in the predictor
(see Figure 4). Predictors with larger parameter estimates pro-
duce larger elevation differences per unit difference in the pre-
dictor.

Even after considerable experience with hazard models, visu-
alizations in transformed hazard remain difficult. An alterna-
tive intuitive approach is to transform the outcome back into
the more familiar metric of risk, antilogging parameter esti-
mates as necessary. Of course, a researcher must use different
transformations and i nterpretations depending on whether con-
tinuous- or discrete-time models have been fitted.

We illustrate these ideas beginning with the continuous-time
hazard model in Equation 1 . Antilogging both sides, we have
the following:

h(t)

Because RETARDATION = 0 for mildly retarded residents and 1
for severely retarded residents, the hazard functions corre-
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spending to these two groups are A^mild) = «** and
A((:severe) = e**e*. The risk profile in the severely retarded
group is simply the profile in the mildly retarded group multi-
plied by &. This multiplicative rule applies to both categorical
and continuous predictors. So in continuous-time hazard mod-
els, antilogged parameter estimates yield numerical multipliers
of risk per unit difference in the predictor.

This transformation strategy enabled Shapiro et al. (1989) to
document the vast superiority of lithium over imipramine in
reducing the recurrence of manic episodes in a group of pa-
tients with a history of affective disorders. After adjusting for
several other predictors, including patient gender and psycho-
logical history, the authors obtained a parameter estimate of
2.378 for a dummy variable representing drug therapy, SE =
0.68, / = 3.52, p < .0005 (their Table 2, p. 403). They interpreted
the antilog of this estimate (e2378 = 10.8) by writing that "pa-
tients with a manic index episode taking imipramine were at
almost 11 times the risk for recurrence of those taking lithium"
(p. 403).

Another way to interpret this scaling factor is in terms of
percentage difference in risk. Doubling the baseline risk (multi-
plying by a factor of 2) is equal to a 100% increase in risk;
tripling the baseline risk (multiplying by a factor of 3) is equal to
a 200% increase. So in the previously cited drug study, multiply-
ing the baseline hazard by 10.8 corresponds to a 980% increase
in the risk of relapse for those taking imipramine over those
taking lithium. The general rule is simple: The percentage dif-
ference in risk per unit difference in the predictor is 100(6* — 1)
(see Allison, 1984; Tuma & Hannan, 1984). Some researchers
add these estimates of d>, or 100(e* - 1), to tables reporting
parameter estimates, standard errors, I statistics, and p values
(see, for instance, Bolger et al, 1989, Table 1; Hagan & Zatz,
1985, Table 1; Yamaguchi & Kandel, 1987, Table 2).

Similar but modified interpretations can be made after fit-
ting discrete-time hazard models. Because discrete-time haz-
ard is the conditional probability that an event will occur in a
particular time interval given that it has not yet occurred before
the interval, the model in Equation 3, which uses logit-hazard as
the outcome, expresses the relationship between predictors and
the log odds of occurrence. Estimates of e" or 100(e" - 1) are
therefore multipliers of, or percentage of increases in, the odds
of an event.

After finding a statistically significant relationship between
the risk of becoming a head of household and whether the girl
had lived in a mother-only family when she was between 12 and
16 years of age, McLanahan (1988) used this transformation
strategy to interpret her findings. In the discrete-time hazard
model, McClanahan found that the estimated coefficient of the
single-mother family predictor was 0.87 (p < .05, Table 2, p. 9).
Because e0-87 = 2.39, the estimated odds that an adolescent
would become a head of household in her own right were 2.39
times greater for girls from single-mother homes than for girls
from two-parent families. This represents a 139% increase in
the odds of becoming a head of household.

As these illustrations document, numeric and algebraic strat-
egies are not the last word in communicating the findings of
survival analysis. Apart from being arithmetically convoluted,
they have at least two other flaws. First, they ignore the shape of
the baseline hazard function; they indicate only the extent to

which one risk profile is a magnification or diminution of an-

other. As argued earlier, the shape of the hazard profile—the
temporal placement of its peaks and valleys—tells us much
about the survival process under investigation. Second, alge-
braic interpretations are useful only if the proportional hazards
assumption is met. If the effect of predictors differs over time,
the risk profiles are no longer parallel in log- or logit-space, and
so it makes little sense to talk about one profile being rescaled
to generate the other. If the shapes of the risk profiles differ
dramatically, algebraic interpretions may not only oversimplify
findings; they may even misrepresent them completely

Presenting fitted hazard plots, fitted survival plots, and esti-
mated median lifetimes resolves these problems. Some com-
puter programs provide procedures for recovering fitted pro-
files from parameter estimates. By appropriately substituting
back into the hazard model, a researcher can generate fitted
hazard profiles at substantively interesting values of the predic-
tors for the range of time values spanning the data collection
period. As we show later, fitted hazard profiles are clear, com-
prehensive, and intuitively meaningful. They demonstrate the
effect of predictors on risk and pinpoint when these effects rise,
fall, or remain constant with the passage of time.

Researchers should consider their original questions and ana-
lytic findings when selecting predictor values for constructing
fitted plots. Questions to ask include, "Which predictors did I
emphasize in my research questions?" and "Which predictors
were significantly associated with hazard?" Use predictors that
are substantively and statistically important when generating

Hazard
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Figure 6. Fitted hazard (top) and survivor (bottom) functions for spe-

cial education teachers by entry cohort (Singer, in press).
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the fitted profiles; lesser variables can be included as controls

by equating their value to their sample averages.

We illustrate these ideas in the top panel of Figure 6, which

presents a pair of fitted hazard profiles generated in our own

research on employee turnover. These profiles describe the ca-

reer durations of 3,941 special education teachers hired in Mich-

igan between 1972 and 1978. The teachers are divided into two

cohorts: 1972-1974 and 1975-1978. We divided the sample at

1975 because in that year Congress passed PL 94-142, the Edu-

cation for All Handicapped Children Act, the national special

education law that dramatically altered the demand for and

responsibilities of special educators (Singer & Butler, 1987). Re-

search interest centers on identifying how long special educa-

tors stay in teaching, and whether the risk of leaving teaching

differs between teachers hired before the passage of PL 94-142

and teachers hired after.

Using discrete-time hazard models, we found a main effect of

COHORT (0 = 1972-1974, 1 = 1975-1978) and an interaction

between COHORT and time. The interaction violates the propor-

tional hazards assumption. The shapes of the fitted hazard pro-

files differ considerably; they are neither magnifications nor

diminutions of each other; they virtually coincide in \ears 1

through 5 and diverge thereafter. The interpretation of these

plots is nevertheless straightforward: The two cohorts of

teachers have virtually identical early risks and distinctly differ-

ent later risks. Early after hire, the two cohorts of teachers be-

have comparably; after a few years in the classroom, however,

those hired before the passage of PL 94-142 were more likely to

leave than teachers hired after. By presenting fitted hazard

functions, we need not struggle to capture these effects using

abstract scaling factors and percentage increases that ignore

these important interactions with time.

Fitted survivor functions and estimated median lifetimes can

also be reconstructed from the fitted hazard profiles, although

we believe that fitted hazard profiles are more informative for

identifying when events occur (bottom panel of Figure 6). Com-

parison of the two survivor curves supports our earlier conclu-

sion: The fitted survivor functions are almost identical for Years

1 through 5 and diverge thereafter. Notice that it is more diffi-

cult to discern differences between the fitted survivor profiles

than between the fitted hazard profiles because the survivor

function cumulates the risks. Even the usually helpful summary

statistic of estimated median lifetime can mislead. Because of

the near coincidence in hazard during teachers' early years on

the job, the estimated median lifetimes for the two cohorts are

almost identical (6.3 and 6.9), failing to capture the critical late

career differences in risk.

Discussion

Survival analysis allows researchers to answer research ques-

tions about whether and if so, when critical events occur. The

method is powerful, flexible, and applicable to many research

questions arising in psychology. Although researchers are ex-

ploring the utility of these methods, we believe that many other

questions about response time, waiting time, career duration,

recidivism, relapse, and time to life events remain unasked and

unanswered because researchers have yet to learn how to use

this more sensitive analytic tool. Nor do these easy-to-imple-

ment methods require an initial investment in dedicated com-

puter software.

To encourage the application of survival analysis in psycho-

logical research, we conclude with 20 guidelines for good sur-

vival analysis:

1. Gather longitudinal data on representative samples from

well-defined target populations. Do not exclude censored cases.

Define your target population using delimiters unrelated to

time.

2. Define event states precisely. Clearly describe the behav-

iors, responses, or scores that define each state.

3. Identify an appropriate beginning to time. Imprecise start

times lead to imprecise event times. The clock may not always

start at birth; other times may be just as good (e.g., date of

diagnosis, randomization, treatment).

4. Gather data for a long enough time so that more than half

the sample will experience the target event. The longer the study,

the less censoring and the more powerful the study.

5. If you can only collect data on a few occasions, take mea-

surements more frequently during periods of high hazard. Con-

tinuous time is best, but discrete time can be almost as good.

6. When possible, collect data prospectivefy Retrospective

data are subject to recall errors.

7. Minimize and model attrition. The longer the data collec-

tion period, the greater the attrition. Individuals lost to follow-

up have censored event times, but they can differ systematically

from continuing participants. Use sensitivity analysis to evalu-

ate the impact of attrition.

8. With repeated events, record the spell number and examine

its effect. The natural course of the first spell can differ from

that of second and subsequent spells.

9. Follow participants for longer periods to increase statistical

power. Doubling the length of follow-up can give the same sta-

tistical power with one-third fewer people.

10. Use the survivor function to describe the cumulative proba-

bility that an event will occur on each of several successive occa-

sions. The survivor function incorporates both censored and

uncensored cases. It can be summarized easily by the estimated

median lifetime.

11. Use the hazard function as a sensitive lens to detect when

the event of interest is most likely to occur. Hazard is high when

the slope of the survivor function declines precipitously.

12. Perform exploratory analyses using sample hazard and

survivor profiles computed within groups. Choose the groups

based on characteristics of substantive interest (e.g, stratify by

the predictors).

13. Build statistical models of the hazard profile. Hazard

modeling should be used to explore the effects of several predic-

tors simultaneously, to evaluate interactions among predictors,

and to make inferences about the population.

14. Do not ignore the shape of the baseline hazard profile.

Baseline hazard describes the overall level of risk and reveals

the main effect of time.

15. Always check the tenability of the proportional hazards

assumption. Violations of the assumption are commonplace

and can dramatically affect parameter estimate interpretation.

16. Include both time-invariant and time-varying predictors in

hazard models. Many interesting predictors vary over time; in-

corporate this variation into hazard models.
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17. Check interactions between time and the other predictors.

The effect of a predictor can vary over time; when it does, the

proportional hazards assumption is violated.

18. Consider a competing-risks formulation. Lifetimes can be

terminated by different competing events.

19. Try discrete-time survival analysis. It requires no dedi-

cated software. It is simple to apply, easily incorporates time-

varying predictors, and facilitates the estimation of the baseline

hazard profile.

20. Use fitted hazard and survivor functions to display effects

of key predictors. One picture is worth a thousand numbers.

Researchers rarely ask questions that they do not know how

to answer. We believe that many psychologists interested in the

timing of events have altered their research questions because

they did not know how to analyze data from censored and non-

censored observations simultaneously. We hope that our presen-

tation of survival analysis will help researchers frame their ques-

tions appropriately, and provide them with strategies for answer-

ing those questions as simply and directly as possible.
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