Supplementary Materials for
Modeling Multivariate Count Time Series Data with a Vector Poisson Log-Normal Additive Model: Applications to Testing Treatment Effects in Single-Case Designs

Sun-Joo Cho, Vanderbilt University
Matthew Naveiras, Vanderbilt University
Erin Barton, Vanderbilt University

Scatter and Lag Plots among the Three Behaviors

Figure 1. A scatter plot among the three behaviors.

Figure 2. First-order lag plots for Behavior 1 (a teacher's descriptive praise; top panel), Behavior 2 (promoting social interactions; middle panel), and Behavior 3 (redirections; bottom panel).

V-PLN-A Specification of Model4

Model4 for Behavior $1(d=1)$ is written as

$$
\begin{align*}
& \log \left(\lambda_{1 t}\right)=\beta_{10}+\beta_{11} L C_{1 t 1}+\beta_{12} S C_{1 t 1}+\beta_{13} L C_{1 t 2}+\beta_{14} S C_{1 t 2} \\
& \quad+\phi_{11} y_{1(t-1)}+\phi_{12} y_{2(t-1)}+\phi_{13} y_{3(t-1)}+f_{1}\left(\text { session }_{1 t}\right)+\epsilon_{1 t} \tag{1}
\end{align*}
$$

Model4 for Behavior $2(d=2)$ is written as

$$
\begin{align*}
& \log \left(\lambda_{2 t}\right)=\beta_{20}+\beta_{21} L C_{2 t 1}+\beta_{22} S C_{2 t 1}+\beta_{23} L C_{2 t 2}+\beta_{24} S C_{2 t 2} \\
& \quad+\phi_{21} y_{1(t-1)}+\phi_{22} y_{2(t-1)}+\phi_{23} y_{3(t-1)}+f_{2}\left(\text { session }_{2 t}\right)+\epsilon_{2 t} \tag{2}
\end{align*}
$$

Model4 for Behavior $3(d=3)$ is written as

$$
\begin{align*}
& \log \left(\lambda_{3 t}\right)=\beta_{30}+\beta_{31} L C_{3 t 1}+\beta_{32} S C_{3 t 1}+\beta_{33} L C_{3 t 2}+\beta_{34} S C_{3 t 2} \\
& \quad+\phi_{31} y_{1(t-1)}+\phi_{32} y_{2(t-1)}+\phi_{33} y_{3(t-1)}+f_{3}\left(\text { session }_{2 t}\right)+\epsilon_{3 t} \tag{3}
\end{align*}
$$

Parameters are defined as

- β_{10}, β_{20}, and β_{30} are intercepts for Behavior 1, Behavior 2, and Behavior 3, respectively,
- β_{11}, β_{21}, and β_{31} are the first level change for Behavior 1, Behavior 2, and Behavior 3, respectively,
- β_{12}, β_{22}, and β_{32} are the first slope change for Behavior 1, Behavior 2, and Behavior 3, respectively,
- β_{13}, β_{23}, and β_{33} are the second level change for Behavior 1, Behavior 2, and Behavior 3 , respectively,
- β_{14}, β_{24}, and β_{34} are the second slope change for Behavior 1, Behavior 2, and Behavior 3 , respectively,
- $\Phi=\left[\begin{array}{lll}\phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33}\end{array}\right] ;$ diagonal terms in Φ are autoregressive coefficients and off-diagonal terms in Φ are cross-regressive coefficients, and
- $\epsilon_{1 t}, \epsilon_{2 t}$, and $\epsilon_{3 t}$ are random variables for Behavior 1, Behavior 2, and Behavior 3, respectively.

Data Description of OpenBUGS Code for a V-PLN-A Model

Below, X1 in the OpenBUGS code is described. X2 and X3 can be specified in a similar way to X 1 . X 1 is structured as a 53×12 data matrix:

There is no observation at the first time point $t=0$ for the first-order lag outcomes $\left(\mathbf{y}_{t-1}\right)$. In this study, the lag covariate is treated as a missing variable and its subsequent response variable was not used in MCMC implementation. As a result, there are 53 rows instead of 54 rows for 54 time points. Each column of X1 (specified in Equation 7 in the paper) is defined as:

- Column 1: A covariate of an intercept, a vector of 1
- Column 2: The first level-change dummy coded variable at time t for Behavior $1, L C_{1 t 1}$
- Column 3: The second level-change dummy coded variable at time t for Behavior 1, $L C_{1 t 2}$
- Column 4: The first slope-change dummy coded variable at time t for Behavior 1, $S C_{1 t 1}$
- Column 5: The second slope-change dummy coded variable at time t for Behavior 1, $S C_{1 t 2}$
- Column 6: The first-order lag variable for Behavior 1, $y_{1(t-1)}$
- Column 7: The first-order lag variable for Behavior 2, $y_{2(t-1)}$
- Column 8: The first-order lag variable for Behavior 3, $y_{3(t-1)}$

The last four columns in X 1 are CRS basis functions (specified in Equation 6 in the paper):

- Column 9: The first basis function, b_{11}
- Column 10: The second basis function, b_{12}
- Column 11: The third basis function, b_{13}
- Column 12: The fourth basis function, b_{7}

A V-PLN-A Model with Nonlinear Treatment Effects and Nonlinear Trend over Sessions

Below, a V-PLN-A model with nonlinear treatment effects $\left(f_{d}\left(S C_{d t 1}\right)\right.$ and $\left.f_{d}\left(S C_{d t 2}\right)\right)$ and nonlinear trend over sessions $\left(f_{d}\left(\right.\right.$ session $\left._{d t}\right)$) is specified for the three phases (baseline-treatment-baseline [maintenance]) SCD:

$$
\begin{gather*}
\log \left(\lambda_{d t}\right)=\beta_{d 0}+\beta_{d 1} L C_{d t 1}+f_{d}\left(S C_{d t 1}\right)+\beta_{d 2} L C_{d t 2}+f_{d}\left(S C_{d t 2}\right) \\
+\phi_{d 1} y_{1(t-1)}+\ldots+\phi_{d D} y_{D(t-1)}+f_{d}\left(\text { session }_{d t}\right)+\epsilon_{d t}, \tag{4}
\end{gather*}
$$

where

- $L C_{d t 1}$ is the first level-change dummy-coded variable at time t for a behavior d,
- $S C_{d t 1}$ is the first slope-change variable at time t for a behavior $d ; S C_{d t 1}$ is the interaction between a dummy-coded variable for baseline vs. intervention and a sequence number of sessions,
- $L C_{d t 2}$ is the second level-change dummy-coded variable at time t for a behavior d,
- $S C_{d t 2}$ is the second slope-change variable at time t for a behavior $d ; S C_{d t 2}$ is the interaction between a dummy-coded variable for intervention vs. maintenance and a sequence number of sessions,
- $y_{d(t-1)}$ is the first-order lag variable,
- $\beta_{d 0}$ is the intercept at the baseline for a behavior d,
- $\beta_{d 2}$ is the second level change (treatment vs. maintenance) for a behavior d,
- $\phi_{d d}$ is the first-order AR effect for a behavior $d ; \phi_{d d^{\prime}}$ is the first-order CR effect for a behavior d and a behavior d^{\prime},
- $f_{d}\left(S C_{d t 1}\right)$ is a smooth function for data-driven first slope change (baseline vs. treatment) for a behavior d,
- $f_{d}\left(S C_{d t 2}\right)$ is a smooth function for data-driven second slope change (treatment vs. maintenance) for a behavior d,
- $f_{d}\left(\right.$ session $\left._{d t}\right)$ is a smooth function for data-driven trend for a behavior d, and - $\epsilon_{d t}$ is the random variable for a behavior d at time t.

