Multiphasic, Dynamic, High Throughput Measurements and Modeling for Postgenomic Cellular Biophysics

John P. Wikswo
Living State Physics Group
Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE)
Instrumenting and Controlling the Single Cell (ICSC) Project

Physiome SAB, 10 November 2001
Whence the Future for HTS and Biological Modeling?

• What will be required of future
 – High throughput screening (HTS) technologies?
 – Biological modeling?

• How best might they be coupled?
HTS Today

• Antibody/antigen binding
• Enzyme amplification
• Gene expression
• Ion channel modulation
 – Intracellular calcium
 – Transmembrane action potential
• Arrays
 – DNA
 – Proteins …
 – Cells…………
• Chemical libraries
• Fluorescent and magnetic tagging…

A variety of independent “slow” measurements of single-step operations on simple systems
Biological Modeling Today

• Electrical
 – Transmembrane action potential
 – Tissue-level action potential propagation
• Biochemical
 – Signaling and secondary messengers
 – Protein structure and function
 – Metabolic fluxes
• Biomechanical
 – Stress, strain
 – Hydrodynamics
 – Signal transduction
 – Molecular motors....

Frontal attack using ODE’s and PDE’s that involves nanomoles of equations and gigaflop years...
The Problem

- The “problem” is too big for measurement or models alone
- The models need data to drive and validate them
- The experiments need models for design and interpretation

- Advanced models and measurements will require new and coordinated technologies
Recent Progress in Biology

- Genomics
 - Structural genomics
- Proteomics
 - Structural proteomics
 - Functional proteomics
- What’s next?
Reductionism

- Thermodynamics
- Statistical mechanics
- Molecular/atomic dynamics
- Electrodynamics
- Quantum Chromodynamics
- Bulk solids
- Devices
- Continuum models
- Microscopic models
- Atomic physics
- Anatomy
- Physiology
- Organ
- Cell
- Protein
- Genome
Post-Reductionism

Thermodynamics
Statistical mechanics
Molecular/atomic dynamics
Electrodynamics
Quantum Chromodynamics

Bulk solids
Devices
Continuum models
Microscopic models
Atomic physics

Anatomy
Physiology
Organ
Cell
Protein
Genome
Spatial Resolution in Physiology

X-Ray / SEM / STM
Optical microscope
Magnifying glass
Unaided eye

Future = Cell
How do we study cellular-level responses to stimuli in both normal and patho-physiologic conditions?

Hypothesis: Great advances in physiology have been made by opening the feedback loop and taking control of the biological system.
Negative versus Positive Feedback

Opening the Feedback Loop

Hypothesis: Great advances in physiology have been made by opening the feedback loop and taking control

- Starling cardiac pressure/volume control
- Kao neuromuscular/humeral feedback
- Voltage clamp of the nerve axon

Simplified Hodgkin-Huxley

- For the resting cell, E_{Na}, R_{Na} and inward I_{Na} depolarize the cell with positive feedback
- E_{K}, R_{K} and outward I_{K} repolarize the cell and serve as negative feedback
- Ignore Cl

Hodgkin-Huxley: Closed-loop with positive and negative feedback

Adapted from Khoo, Michael C.K.; Physiological Control Systems; 2000, IEEE Press, p.259
Overriding Internal Control: Voltage Clamp

Adapted from Khoo, Michael C.K.; Physiological Control Systems; 2000, IEEE Press, p.259
Opening the Loop During External Control

Adapted from Khoo, Michael C.K.; Physiological Control Systems; 2000, IEEE Press, p.259
A Key to the Future: External Control of Cellular Feedback

✓ Electrical
 • Mechanical
 • Chemical
 • Cell-to-cell…
Signatures of Control

- Stability in the presence of variable input ($\Delta T = 50^\circ F$)
- Oscillations when excessive delay or too much gain
- Divergent behavior when internal range is exceeded or controls damaged

Control Stability

- Proportional control
- Proportional control with finite time delay
- Higher gain, same delay
- Same gain, longer delay
Intracellular Metabolic and Chemical Oscillations

- We know that oscillations and bursts exist
 - Voltage
 - Calcium
 - Glucose/insulin
 - Neurotransmitter

- **Prediction:** At higher bandwidths than provided by current instrumentation, we will see **chemical** bursts, oscillations, and chaotic behavior. **FIND THEM AND USE THEM!**

http://www.intracellular.com/app05.html
A Key to the Future
Probing and Controlling Cellular Metabolic and Signaling Pathways
Postgenomic Integrative/Systems Physiology/Biology

- Specify
 - Concentrations
 - Rate constants

- Add
 - Gene expression
 - Protein interactions
 - Signaling pathways

- Include
 - Intracellular spatial distributions, diffusion, and transport (ODE → PDE)

- ... Calculate how the cell behaves in response to a toxin or drug
The Catch

• Modeling of a single mammalian cell may require 100,000 variables and equations
• Cell-cell interactions are critical to system function
• 10^9 interacting cells in some organs
• The data don’t yet exist to drive the models
• Micromoles of equations and teraflop years
• Hence we need to link models AND experiments to form hybrid digital/analog computers …
The Challenge

• Develop the tools and techniques for integrative, post-genomic **cellular** biology
 – Genes
 – Proteins
 – Metabolic and signaling pathways
 – Models
 – Instruments
 – **Wide-bandwidth dynamic control theory for cellular systems**

• **Needed**: Multiphasic, dynamical (fast) measurements and models of multi-step processes in complex cellular systems
Why Fast?

- Cellular-scale biochemistry can be very fast
- Wide measurement bandwidth, i.e., good response to high frequencies, is required to track cellular events
- Stable control requires a matching, high bandwidth
Physical and Biological Time Constants, Seconds

Mixing time to homogenize liquid in a large-scale bioreactor (10-100 m³) \(10^4 - 10^8\)
90% liquid volume exchange in in a continuous reactor \(10^5 - 10^6\)
Oxygen transfer (forced not free diffusion) \(10^2 - 10^3\)
Heat transfer (forced convection) \(10^3 - 10^4\)

Cell proliferation, DNA replication \(10^2 - 10^4\)
Response to environmental changes (temperature, oxygen) \(10^3 - 10^4\)
Messenger RNA synthesis \(10^3 - 10^4\)
Translocation of substances into cells (active transport) \(10^1 - 10^3\)
Protein synthesis \(10^1 - 10\)
Allosteric control of enzyme action 1

Glycolysis \(10^{-1} - 10^{-2}\)
Oxydative phosphorylation in mitochondria \(10^{-2}\)
Intracellular quiescent mass & heat transfer (dimension \(10^{-5}\) m) \(10^{-5} - 10^{-3}\)
Enzymatic reaction and turnover \(10^{-6} - 10^{-3}\)
Bonding between enzyme & substrate, inhibitor \(10^{-6}\)
Receptor-ligand interaction \(10^{-6}\)
Why Multiphasic?

Single measurements are woefully inadequate to study cellular-level responses to stimuli in both normal and patho-physiologic conditions!
The Problem

• Existing chemical and metabolic sensors and actuators are too slow to track biochemical events at the cellular level

• Many metabolic and signaling models are slow.

• Metabolic control is today possible only at the animal and organ level: metabolic clamp

• Post-genomic physiology needs cellular metabolic and signaling control
What do we need?

- Simultaneous, fast sensors (transducers) that detect a variety of changes within and outside the cell
- Actuators that control the microenvironment within and outside the cell
- Openers for the internal feedback loops
- System algorithms and models that allow you to close and stabilize the external feedback loop
- ...
Possible Approaches

- A biological cell or molecule inserted into a microinstrument, *e.g.*, a single-cell spectrophotometer or a whole-cell patch clamp
- A nanoinstrument inserted into the cell/molecule, *e.g.*, caged ATP

- Combine the cells, instruments, and software to form an integrated, closed-loop bio/nano/micro/info system
The Modeling Challenge

- Interpret, predict, and control the fast, dynamical response to interventions in closed-loop (internal or external) physiological control systems
The Experimental Challenge

- *Fast* requires small to beat diffusion time constants
- Small = < nL
- Massively-Parallel, Multi-Phasic Cellular Biological Activity Detector (MP²-CBAD)
- Chemical and Mechanical Clamp
Summary

- HTS today: A variety of “slow” measurements of single-step operations on simple systems
- Modeling today: Frontal attack using ODE’s and PDE’s that is heading towards micromoles of equations and gigaflop years…
- Molecular biology and physiology are converging on the cell, where the great questions reside
- Hypothesis: Great advances in physiology have been made by opening the feedback loop and taking control of the biological system
- Future: A hybrid approach using integrated, massively parallel, multiphasic, dynamic, high throughput measurements and modeling