The Magnetocardiogram, Tissue Anistropy, and the Cardiac Bidomain

John Wikswo
Franz Baudenbacher
Living State Physics Group
Vanderbilt University
Nashville, TN 37235 USA
The First Clinical VMCG Machine

Vector Magnetocardiography
Stanford
~1974
Questions Regarding the MCG

Information Content?
• Does the MCG contain information not present in the ECG?

The Inverse Problem
• There is no unique solution to the ECG, MCG, or ECG-MCG inverse problem. What role do Silent Sources play?
The uniform double-layer model

- Assumes
 - Uniform thickness
 - Uniform strength
 - Current perpendicular to the wave front

- Dipole moment and potential \(V(r) \) are determined by the solid angle subtended by the double-layer rim
The electric and magnetic heart vectors

- $m = \frac{1}{2} r \times p$ explains relation of electric and magnetic vectors
- Double-layer rim determines both m and p
- Little significant new information in the MCG...?

1 millimeter: Cardiac fiber sheets
It’s the anisotropy...
Cardiac fiber orientation is the source of the new information

- Circulating current components are electrically silent
- Only magnetic fields can distinguish between two possible models

The cardiac syncytium: A three-dimensional non-linear anisotropic bidomain

It’s the anisotropy....
2-D Bidomain Equations

- Homogenized
- Coupled V_m & V_e
- Nonlinear reaction-diffusion equation
- Boundary value equation

\[
C_m \frac{\partial V_m}{\partial t} = -J_{ion} - \frac{1}{\beta} \nabla \cdot \tilde{g}_e \nabla V_e ,
\]

\[
\nabla \cdot (\tilde{g}_i + \tilde{g}_e) \nabla V_e = -\nabla \cdot \tilde{g}_i \nabla V_m ,
\]

where \tilde{g}_i and \tilde{g}_e are the intracellular and extracellular conductivity tensors; β is the ratio of membrane surface area to tissue volume (0.3 μm$^{-1}$); C_m is the membrane capacitance per unit area (0.01 F/m2); and J_{ion} is the membrane current per unit area.
The Cardiac Bidomain

- Intra- and extracellular spaces have unequal anisotropies in their electrical conductivities. Really?
 - Magnetic fields
 - Virtual electrodes
 - Quatrefoil reentry
 - Defibrillation?
Recording from the Bidomain

- **Extracellular potential**
 - Extracellular electrode arrays (≤1250)
- **Intracellular potential**
 - Intracellular microelectrodes (≤2)
- **Membrane potential**
 - Voltage-sensitive fluorescent dyes (256 – 10,000)
- **Net action currents**
 - Scanning SQUID microscope (1)
Optical Imaging of the Transmembrane Action Potential During Stimulation, Reentry, Fibrillation, and Defibrillation

- Langendorff-perfused rabbit heart
- Voltage-sensitive dye in membrane measures V_m
- Laser illumination
- High-speed charge-coupled-device (CCD) camera
Vanderbilt cardiac imaging system

Verdi diode-pumped solid-state laser

Di-4-ANEPPS voltage dye

Light delivered by bundles of optical fibers

Dalsa CCD camera:
- 12 bit
- 64x64 pixels
- 1200 frames/sec

10 x 5 x 7.5 cm³ bath

37 °C Tyrode’s solution
Gus2: MATLAB Data Viewing Program

Four S2 frames indicated by LED

Written by Gustavo Rohde
Injecting -20 mA into Equal-Anisotropy Cardiac Tissue

- Point cathodal stimulation
- Virtual cathode depolarizes (red)
- Wave front propagates from the edge of the virtual cathode (yellow)
Bidomain Anisotropy

There is no single coordinate system in which the tensor conductivity is everywhere diagonal!

\[
\begin{align*}
\sigma_{ix} & = 0.2 \text{ S/m} \\
\sigma_{iy} & = 0.02 \text{ S/m} \\
\sigma_{ex} & = 0.8 \text{ S/m} \\
\sigma_{ey} & = 0.2 \text{ S/m}
\end{align*}
\]

\[
\sigma_{ix} / \sigma_{iy} = 10 \\
\sigma_{ex} / \sigma_{ey} = 4
\]
Virtual electrodes in cardiac tissue

- As a result of unequal electrical anisotropies in intracellular and extracellular spaces:
 - Point cathodal stimulation
 - Virtual cathode depolarizes (red)
 - Virtual anodes hyperpolarize (blue)

Puzzle

Four modes of stimulating cardiac tissue

- **Cathode make** (turn on negative current)
- **Anode make** (turn on positive current)
- **Cathode break** (turn off long negative current)
- **Anode break** (turn off long positive current)

Synchronous Imaging of Point Activation Patterns

--- Virtual Electrodes ---

Cathode Make
-10 mA

Anode Make
+10 mA

Cathode Break
-2 mA

Anode Break
+3 mA

10,000 pixel/frame

Fiber Direction

Depolarized

Hyperpolarized

Optical imaging of quatrefoil reentry

Transmembrane potential distributions from selected frames of a movie for cathodal-break stimulation

Cathodal-Break Isochrones

Anodal-Break Isochrones

Courtesy of Marc Lin

It’s the anisotropy...

Corbin and Scher, 1977
Magnetic Field From a Circular Action LV Free Wall Action Potential:

\[V_m(x, y) = 52.0 \cdot \tanh \left[5.4 \cdot \left(R - \sqrt{x^2 + y^2} \right) \right] - 38 \]
The Apex Will Have a Complicated B Field

SQUID Magnetometers

- Superconducting
- QUantum
- Interference
- Device

- Bandwidth: DC-10 kHz
- Image net action current in x-y plane
- Big, smaller, smallest…
NanoSQUID: Cooled with liquid N\textsubscript{2} and liquid He
The SQUID lives in the vacuum space …
Wind a Pickup Coil

- Sapphire Bobbin
- 250 – 500 µm
- 25 µm Nb Wire
In Reality ..

- SQUID
- Pickup Coil
- He-Reservoir
- 77K - Radiation Shield
Pickup Coil

5.0 kV x130 231μm

5.0 kV x100 300μm
Image the LV Free Wall ...

- Scanning SQUID microscope
- Isolated rabbit heart
- Point stimulation
- Anisotropy should produce a quatrefoil current pattern
Langendorff-Perfused Isolated Rabbit Heart

15μm Mylar-Foil

Bath
Isolated Rabbit Heart

From Heat Exchanger

Dewar Tail

To Heat Exchanger
MCG From the LV Free Wall

Scan Area

Pixel size 0.16 mm²

Bandwidth = 1 kHz

1 pT ~ B_{earth}/100,000,000
Cathodal Current Injection Followed by Initiation of Action Currents

Stimulus: 5 ms, 1.5 mA

1 ms after Stimulus
Layered Bidomain

Experiment

Total Bidomain Field of 3mm cardiac slice during current injection of 1.5mA z=0.1mm
Propagation of Action Currents

4 ms

10 ms

16 ms
The Magnetic Field From Action Currents in Isolated Cardiac Tissue – The Apex

Stimulus
0.6 mA 5 ms

Near_apex.mpg

Courtesy of Franz Baudenbacher
Forthcoming...

- Measured magnetic field gives current
- Measured V_m gives the voltage
- Model of both requires the bidomain conductivities (Eason and Trayanova)

- Obtain the doubly anisotropic bidomain conductivities by fitting the model to the data
S2- Point Stimulation

Point Electrode

S = 6*Threshold

S2-S1=240 ms

6 ms

12 ms

18 ms
V_m Isochrones – LV Free Wall

- **Point Stimulation**
- **Fiber Orientation**

[ventricle_propagation.mpg]
V_m Isochrones - Apex

Point Stimulation

apex_propagation.mpg
Velocities as a function of direction

![Graph showing velocities as a function of direction. The x-axis represents the angle in degrees, ranging from 0 to 350. The y-axis represents the propagation velocity in arbitrary units, ranging from 4 to 24. Two lines are plotted: one for ventricle and one for apex. The ventricle line is shown with a dashed blue line, and the apex line is shown with a solid red line. The graph shows distinct peaks and valleys in the velocity values at different angles.](image_url)
SQUID Senses Spatial V_m Gradients

Repolarization

Injury Currents
Gradients in Repolarization

Magneto Cardio Gram

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

pixel (14,5)

pixel (20,5)

repolarization.mpg
Dipole Signature in ST-segment

71 ms
Information Content of the MCG

• Evidence that electrically silent sources exist.

• Magnetic mapping can provide images of net action current in cardiac tissue.

• Combined electric and magnetic measurements can provide the anisotropic conductivities and the non-linear membrane properties.

• A dimensional biodomain model combined with a realistic fiber architecture may provide a better understanding of the MCG.

• MCG allows probing of gradients in repolarization and resting potentials (injury currents).
Acknowledgements

Rashi Abbas
Petra Baudenbacher
J. J. Koola
Joe Kirschvink
Jenny Holzer
Luis Fong

Marc Lin
Nick Peters
Scott Renkes
Brad Roth
Zvonko Trontelj
Ben Weiss
Vanderbilt University

Living State Physics Group