Abstract: Early work on the conference embraced the notion that “who wins” is the central question that must be “answered before the other important questions of ‘how’ and ‘why’ can be broached” (Fenno 1966, 661). Scholarship on wins and losses suggest clear patterns in roll call voting on the initial and final passage of bills. In particular, if one chamber wins, and another loses, one chamber necessarily gains votes and another chamber necessary loses votes. I test these propositions, and I show that voting patterns during the 93rd to the 110th Congresses do not match the predictions made by the canonical characterization of wins and losses.
1 Introduction

Even though Congressional Chambers differ in the nature of their constituencies and in their procedures, the constitution requires that concurrent majorities in the House of Representives and the Senate support a bill before it becomes law. As a result, majorities in the House and the Senate will often agree that a status quo policy is unsatisfactory but disagree when it comes to what the new policy should be. In a bicameral legislature, lawmakers may encounter this coordination problem any time they collectively consider an alternative to the status quo.

Conventional wisdom suggests that when differences exist between Congressional chambers’ versions of legislation, the House and Senate convene a conference committee of Senators and Representatives to eliminate any differences between bills. Simply put, this account of coordination is incomplete – conferences do not always occur. First, many bills introduced in and passed by the House and Senate are considered trivial or routine. On these bills, the House and Senate easily coordinate, and a conference between the House and Senate is rarely necessary for minor issues. Second, even important legislation may not find its way to a conference committee. in fact, scholars and political commentators have observed a significant decline in the the number of bills sent to conference in recent Congresses (Wolfensberger 2009). Still, while other avenues of coordination are available to Members of Congress, conference committees are the most talked about and the most studied method of inter-cameral compromise.

Previous research on the use of conference committees has focused on the question of “who wins?” That is, which chamber commands more leverage on the bill that emerges
from the conference process. A survey of this literature reveals that the scholars that asked this question came to inconsistent conclusions. In this paper, rather than take a side in their debate, I will explore the implications of asking their particular question about conference outcomes. I will show that the explicit and implicit assumptions associated with the question of who wins lead to conclusions contradicted by data. In particular, I will show that simple discussions of coordination imply clear patterns in voting behavior on reconciled bills. I will also present evidence that the patterns suggested by these theories do not occur systematically in the House or the Senate. This evidence suggests that students of the conference procedure should develop a more complicated theory of inter-cameral compromise than the one offered by early studies.

These studies correctly claim that chambers stand to gain or lose by reconciling different versions of bills through a conference committee is theoretically prior to a more general understanding of how the House and Senate coordinate on legislation (Fenno 1966). It also stands to reason that understanding the effects of conference committees, which have traditionally occurred in the penultimate legislative stage for important bills, is a prerequisite to understanding when and why members of the House and Senate will use this particular mechanism to settle differences in legislation.

The paper is organized as follows. First, I describe the conventional wisdom associated with the use and impact of the conference procedure. I focus on work that studies the advantages one chamber has over the other at the conference stage. Second, I present the reconciliation mechanism that is implicit in discussions of “who wins in conference committees. I also derive some hypotheses associated with this mechanism. Third, I will examine voting patterns associated with bills reconciled through conference and show
that voting behavior in Congress on conferenced bills is incompatible with the assumptions
that undergird discussions of who wins. Fourth, I will discuss two alternative explanations
for why these patterns emerge. Finally, I present some conclusions and discuss plans for
further inquiry.

2 Theoretical Basis

Early studies that focus exclusively on conferences are preoccupied with which chamber
wields the most power in the conference stage of the legislative process. This work posited
that “who wins” is the central question that must be “answered before the other important
questions of ‘how’ and ‘why’ can be broached” (Fenno 1966, 661). This literature is
notable for both for its detailed empirical examination of particular policy areas and for
its contradictory findings.

In an early study of the conference procedure, Steiner (1951) found that the House
exercised more bargaining leverage in conference. His study focused on fifty-six major
conferences, and found that the House “won” in thirty-two of those cases. Steiner’s study
raises questions about measurement of wins and losses, a problem that persists through
all studies of chamber influence at the conference stage. He more or less settled on
determining wins and losses by how much the conference report differed from the initial
bills passed by either chamber. A chamber lost if its bill differed more than the other
chamber’s bill from the final conference report. Subsequent studies measured wins and
losses in basically the same way.

Some of these other studies found evidence of Senate dominance of the conference pro-
cedure. Notably, Fenno’s study of the appropriations process found that Senate conferees
won major concessions from House conferees. He asserts that Senate “conferees draw more directly and more completely upon the support of their parent chamber than do the House Committee and its conferees” (Fenno 1966, 668). In contrast with Steiner, Fenno found that the Senate won 187 out of 331 appropriations conferences held between 1947 and 1965. Later studies reinforce Fennos assertion that the Senate wields more power at the conference stage (Manley 1970; Vogler 1970; Vogler 1971).

Contradictory findings are also present in single studies of the conference procedure. Ferejohn argued that the conference committee can “usefully be seen as an arena in which the two bodies try to attain partly incompatible goals. And to a certain extent, both may be fairly successful” (Ferejohn 1975, 1043). Ferejohn examined three major policy areas: rivers and harbors, higher education, and budget resolutions. He posits that the House tends to win when the conference considers budget cuts and that the Senate tends to win on budget increases. Another study by Strom and Rundquist (1977) reconciles the variance found in earlier studies of conference dominance differently. They find that in cases where the House proposed and passed the bill first, the Senate won at the conference stage 72% of the time. In contrast, when the Senate acted first, the House won at the conference stage 71% of the time. Their findings suggest that the Senate’s advantage at the conference stage might be an artifact of earlier studies’ focus on appropriations bills and the constitutional requirement that all appropriations bills be introduced first in the House.

In terms of explaining the frequency and impact of conference committees, these studies of the conference procedure are limited both in their theoretical approach and in their research design. They attempt to provide a theoretical mechanism for why one chamber
should win more concessions from the other and focus on what chambers must give up in order to come to an agreement. However, there is little reason to believe that either chamber has an institutional advantage within the conference. Conference committee rules stipulate that a conference report must be supported by a majority of each chamber’s delegation to the conference committee. Hence, representatives from either chamber can effectively veto any unappealing report at the conference stage (Tsebelis1997; 2005).

3 Finding a “winner”

The literature on which chamber wins tries to identify whether the bill reported out of conference more closely approximates the House version or the Senate version. In this representation, two bills, the House version and the Senate version, lie on a single dimension. If a conference report falls closer to the House version than to the Senate version along that dimension, the House wins and vice versa.

Figure 3.1: Determining who wins in conference.
(about here)

Figure 3.1 represents the story told by Steiner (1951), Fenno (1966), Ferejohn (1975) and others where $\bar{b} = \min\{b_H, b_S\}$ and $\bar{\bar{b}} = \max\{b_H, b_S\}$ and b_H and b_S are the bills passed by the House and Senate. If a conference committee produces a reconciled bill in the interval $[\bar{b}, 1/2\bar{b} + 1/2\bar{\bar{b}}]$, the chamber that proposed \bar{b} wins. Conversely, if a the conference produces a bill in the interval $(1/2\bar{b} + 1/2\bar{\bar{b}}, \bar{\bar{b}}]$, the chamber that produced $\bar{\bar{b}}$ wins. A conference report at exactly $1/2\bar{b} + 1/2\bar{\bar{b}}$ would be a tie between the House and Senate.
The discussion of “who wins” in the literature on conference committees amounts to a disagreement over expectations of possible policies that come out of the interval \([b, \bar{b}]\). If we believe the story told by scholars of conference wins and losses, we at least expect that the conference committees proposal will fall somewhere in \([b, \bar{b}]\), but we do not know where.

3.1 Implications of choosing a “winner”

The location of the status quo, \(q\), is missing from the characterization of the conference process offered by the canonical discussion of who wins. Also missing is a discussion of how legislators respond to bills before and after conference. In a spatial model, legislators would support a bill or the status quo depending on which of the alternatives is closer to her ideal point. A legislator with an ideal point exactly in between \(q\) and \(b_i\) would prefer the proposed bill and the status quo equally. That is to say, she is indifferent.

Figure 3.2: Indifference, \(q\), and \(b_i\).

(about here)

Figure 3.2 shows how the location of \(q\) and \(b_i\) determine the location of a cut point. In a one-dimensional space, the legislator with an ideal point at \(x_k\) is indifferent between voting for the bill located at \(b_i\) and the status quo located at \(q\). This is so because \(x_k = 1/2q + 1/2b_i\). Of course, the likelihood that a legislator will find herself at exactly \(1/2q + 1/2b_i\) is vanishingly rare. In most cases \(x_k\) is simply the point at which all legislators to one side should prefer to vote for a bill, and all the legislators to the other side prefer to vote against the bill (in favor of the status quo). I will call \(x_k\), the cut point.
The location of bills presented to legislators for initial (pre-conference) and final (post-conference) votes should affect the behavior of marginal legislators. To be marginal, a legislator must be close to indifferent between the chamber bill b_i and q, or in other words, her ideal point falls close to the cut point. If we assume that legislators vote sincerely on the initial passage and final passage of bills, then the differences between a bill initially passed within a chamber and the bill produced by the conference committee may attract support from more or fewer legislators depending on the location of the reconciled bill.

Figure 3.3: Ways that different bills produce different Cut Points.

Figure 3.3 provides an example of why this is the case. Initially, legislators consider the the bill b_i. Legislators with ideal points less than x_k will prefer the status quo while legislators with ideal points greater than x_k will prefer the bill to the status quo. Reconciliation with the other chamber then produces a new bill $b' > b_i$. This induces a new cut point $x' > x_k$. Legislators in the interval (x_k, x') initially vote for the bill, but after reconciliation, they prefer q to b'. In this case, they vote yea on b_i but nay on b'. In other words, the bill should have lost support between initial and final passage. Compromise bills produced by the conference committee can also gain votes. For example, if $b' < b_i$, then we would expect legislators in the interval (x', x_k) to change their votes from nay to yea between initial and final passage.

Figure 3.4: Voting on legislation before and after a conference committee.
Now consider the voting behavior in a legislature when bills are proposed and reconciled as represented in the standard conceptualization of who wins. This process is represented in Figure 3.4. Here chamber i initially passes b_i and chamber j passes b_j. As suggested by the literature on who wins, a conference committee produces a bill $b' \in [b_i, b_j]$. Each of these bills produces a separate cut point, $x_{k_i} < x' < x_{k_j}$. If $q < x_{k_i}$, legislators with ideal points in the interval (x_{k_i}, x') will change their votes from yea to nay in chamber i. In chamber j, legislators with ideal points in the interval (x', x_{k_j}) will change their votes from nay to yea. Hence, the canonical representation of conference bargaining implies that changes in votes should be zero sum. Said differently, one chamber will gain votes and one chamber will lose votes between initial passage of a bill and final passage of a conference report.

4 The effects of winning and losing in conference

Scholarship on wins and losses suggest clear patterns in roll call voting on the initial and final passage of bills. Specifically, if one chamber wins and another loses, one chamber necessarily gains votes and another chamber necessary loses votes. Similarly, because the conferenced bills fall between the bills initially passed by the House and Senate, the cut point induced by the conference report must fall between the cut points induced by the bills initially passed in both chambers. The shift between cut points for initial and final passage votes should be positive for one chamber and negative for the other. In this section, I will show that voting patterns and patterns in cut points do not match the predictions made by the canonical characterization of wins and losses.
4.1 Conference effects on vote totals

The spatial theory implicit to discussions of wins and losses in conference implies that one chamber must necessarily gain and one chamber must necessarily lose votes between initial and final passage of legislation. Whether a chamber wins or loses votes depends on the location of the bills initially passed by either chamber relative to the median member of a chamber. For example, but without loss of generality, suppose that $x_m < b_i < b_j$ where x_m is the median member of a chamber and b_i and b_j are the bills initially passed by the House and Senate. According to theories of “who wins”, b', the reconciled bill should be contained in $[b_i, b_j]$, so $|b' - x_m| \leq |b_j - x_m|$. In words, the reconciled bill cannot be further away from the median member of chamber j than the bill initially passed by chamber j. This means that the number of legislators supporting b' should be at least as large as the number of legislators supporting b_j.

Now consider the the relative locations of b' and b_i. If the standard characterization of conference reconciliation holds true then, $|b' - x_m| \geq |b_i - x_m|$. In other words, b' must be at least as far away from the median member of the chamber than b_i. This means that the number of legislators supporting b' cannot be larger than the number of legislators supporting b_i. This logic suggests the first hypothesis I will examine.

H_1: In a comparison of vote totals between initial and final passage of bills, changes in vote totals are zero sum – if one chamber loses votes another chamber must gain votes.

In order to test this hypothesis, I examine vote totals from recorded votes on bills that passed both the House and Senate and then passed through the conference procedure. I limit my analysis to bills from the 93rd through the 110th Congresses. I conduct the analyses on data downloaded from Keith Poole’s Voteview website. The roll calls I
examine come from data originally collected by ICPSR that were subsequently cleaned and compiled by Keith Poole and others.

Table 4.1.1 presents proportions of bills that gained votes between initial and final passage of legislation. These values are derived from comparing the the total number of yea votes on bills that initially passed a chambers to the total number of yea votes cast after the bill is reported out of conference. To save space and because the patterns are essentially the same, I do not report the totals of nay votes.

Table 4.1.1: Ratios of bills that gained votes to the total number of bills with recorded votes in the House or Senate.

Clearly, some bills gain support after passing through a conference committee, but others lose support between initial and final passage. The table contains all bills sent to conference from the 93rd to the 110th Congress that also received two recorded votes. Hence, this table represents only part of the universe of bills sent to conference because many conferenced bills will pass a chamber by an unrecorded vote. For example, the Senate carries out much of its business using unanimous consent agreements. Likewise, the House often uses unrecorded voice votes to consider legislation. In these analyses, I assume that patterns of compromise are the same for bills with or without recorded votes. As is clear in Table 4.1.1, of the two, the House is more likely to record votes than the Senate. For bills sent to conference committees in the 93rd to the 110th Congresses, 151 bills had recorded votes on initial and final passage in both the House and the Senate.

No inferences can be made from these data, but they do shed some light on the process of chamber coordination. Roughly half the time, bills introduced in the House gained votes after the bill passed through the conference process. In the Senate, bills gained additional
votes after the conference in less than half cases I examined. The patterns exhibited in table 4.1.1 do demonstrate some rough complementarity as the “who wins” logic suggests; however, to draw any conclusions we must examine patterns associated with bills that received a recorded vote on initial and final passage in both the the House and Senate.

Table 4.1.2: Contingency table of bills that gained or lost votes with recorded votes in the House and Senate.

Table 4.1.2 presents the frequency of vote gains and losses in a contingency table. Only bills on which there was an initial and final passage vote in both the House and Senate are included. Bills that lost votes between the initial and final passage by the chamber were coded as 0, and bills that did not lose votes after reconciliation were coded as 1.

The canonical treatment of chamber advantage in conference leads us expect empty cells in the top left and bottom right (the downward sloping diagonal) of the contingency table. These entries represent times that both the House and Senate gained or lost votes. The canonical model also leads me to expect bills to fall either in the bottom left or top right (the upwards sloping diagonal) of the contingency table. Bills in these cells are those for which one chamber gained votes while the other lost votes between initial and final passage. Instead, 78 times out of 151, the House and Senate either gained or lost votes together, and in 73 out of 151 times one chamber gained while the other lost votes between initial and final passage. In short, the logic inherited from the who wins in conference literature cannot explain a substantial proportion of the variance I observe in Congressional voting patterns.

H_1 predicts that gains and losses should come in pairs, that is, when one chamber gains votes, the other chamber should lose votes. The null hypothesis suggests that zero sum
outcomes in comparative vote totals should be not more likely than some other outcome. For these data, the χ^2 statistic of this table is .04712, which yields a probability .828 that these variables are independent, so I cannot reject the null hypothesis at any conventional level of confidence.

4.2 Conference effects on cut points

While I can observe recorded votes, observing the location of the status quo or the bills offered by either chamber or the conference committee is considerably more difficult. One way to do this is to compare versions of each bill. Alternatively, I can observe the effect that conferences have on cut points. This amounts to observing the location of the status quo and bills indirectly. To do so, I must rely on the insights gained from the spatial model of legislative preferences.

If we assume that a legislator’s preferences are defined by a symmetric loss function. More intuitively, this means that a legislator prefers bills closer to a given bliss point to bills further away. A legislator is indifferent if the status quo and proposed bill are equally distant from her ideal point. In this case, indifference means that she would be equally likely to support or oppose the bill. Thus, her the probability, π, of supporting a bill equals .5. In order to estimate the point at which legislators would be indifferent, we must observe voting patterns and legislators’ spatial preferences. Vote patterns are observable in recorded votes, and bliss points are are approximated by Poole and Rosenthal’s (1997) first dimension DW-NOMINATE scores.

If I have legislators’ votes on a given bill and their spatial preferences, I can estimate the location of the cut point by estimating a logit of legislative vote patterns conditional
on legislative preferences. A legislator would be indifferent if she was as likely to vote for as vote against a bill, thus he would be indifferent when $\hat{\pi} = .5$. Incorporate this into the logit equation, and algebra yields $x = -\alpha/\beta$ when $\hat{\pi} = .5$.\footnote{Recall that a bivariate logit is calculated as follows.}

First dimension DW-NOMINATE scores provide an (admittedly rough) approximation of legislators’ ideal points in a one-dimensional space (Roberts 2007). By estimating a legislator’s likelihood of voting for a bill conditional on the legislator’s NOMINATE score, I can find an $\hat{\alpha}$ and a $\hat{\beta}$ for a bill. This allows us to estimate the NOMINATE value at which a legislator would be indifferent between supporting or opposing a given bill.

Following a similar logic used to derive H_1, we can derive predictions about the ways these cut points may change between initial and final passage of bills. Since the reconciled bill must be bounded by the chamber’s initial bills, we should expect the cut points induced by the reconciled bills to be bounded by the cut points of the bills initially passed by the House and Senate. This logic leads to the following hypothesis.

H_2: Shifts in cut points between initial and final passage of legislation should be zero sum. As one chamber’s cut point shifts up, the other chamber’s cut point should shift down.

Table 4.2 presents a contingency table for cut point shifts between initial and final passage of bills that pass through the conference process. These are bills for which less than 100% of a chamber’s members supported either version of the bill. Bills that received no nay votes are excluded from the analysis. This is so because if a bill receives no nay

$$\text{logit}(\hat{\pi}) = \ln \left(\frac{\hat{\pi}}{1 - \hat{\pi}} \right) = \alpha + \beta x$$
votes, we assume that the cut point lies outside the range of legislator preferences and is therefore unobservable. Rather than make additional assumptions about the location of cut points in unanimous votes, I exclude them from the analysis. Hence, there are fewer bills here than in Table 4.1.2. H_2 predicts that chambers' cut points for votes on initial and final passage of a bill should shift in opposite directions. In other words, if the cut point makes a positive shift between initial and final passage in one chamber, it must make a negative shift between the initial and final passage in the opposing chamber.

Table 4.2: Contingency table of changes to cut points between initial and final passage bills in the House and Senate.

As with H_1, H_2 indicates that that most of the bills should fall into the off diagonal categories where one chamber’s cut point shifted up and the other chamber’s cut point shifted down. However, 81 bills out of 137 are located on the diagonal and only 56 are located on the off diagonal. Notably, the table yields a $\chi^2 = 5.205$, which means that there is a .023 probability that these variables are independent. This suggests a very different conclusion than the one suggested by H_2. This value is highly suggestive of a statistically significant pattern in cut point shifts; however, that pattern is precisely the opposite pattern suggested by H_2. In these data, a positive shift between initial and final passage in one chamber is likely to be met by a positive shift in the opposing chamber. Likewise, it seems that a negative shift in one chamber is likely met by a negative shift in the other. For the purposes of this analysis, however, I make a similar conclusion that I cannot reject the null hypothesis that for a given bill, a shift in the cut point are not zero sum.
5 Alternative Explanations

These tests suggest that the theory implied by studies of chamber influence in conference cannot explain a significant amount of the variance in vote patterns associated with conferenced bills. Rather than abandon the model completely, it is useful to examine which assumptions might drive the incorrect conclusions associated with the “who wins” model. In this section, I examine the implications of relaxing two assumptions of the canonical theory and the resulting changes in predictions about roll call voting patterns. First, I consider the possibility that shifts in legislation actually occur in a second dimension that is orthogonal to the dimension on which the initial bills are located and unobserved in the original roll call votes. Second, I examine how the model’s predictions may change if conferees appointed as chamber negotiators are faithless. Of these two, only relaxing the assumption that conferees may be faithless is sufficient to explain patterns exhibited in the contingency tables presented in the previous section.

5.1 Relaxing Dimensionality

Discussions of chamber influence in conference by Fenno (1966), Steiner (1951), and others suggest a one-dimensional tug-of-war between versions of a bill passed by the House and Senate. These studies imply that any compromise bill produced by the conference committee falls somewhere on the dimension that connects the two bills that initially passed the House and Senate. This is a strong assumption, but relaxing it is not sufficient to explain all of the observed variance in roll call voting patterns on initial and final passage.

One-dimensional models often draw criticism. Generally scholars turn to the simpler
version of a policy space as a technical assumption to simplify analysis (for example see Cox and McCubbins 1993, 2005; Kreibiel 1991, 1998). This technical assumption is not without its critics. They assert that premising conclusions on single-dimensional policy spaces have troubling substantive implications for the empirical study of legislative behavior.

Even so, relaxing the single dimensionality assumption and only the dimensionality assumption leaves a considerable amount of variance unexplained. To understand why, I forgo a formal proof, and in the interest of space, provide intuitions about how legislators would respond to alternatives in a multi-dimensional space in which the other assumptions remain intact.

Suppose that legislators occupy a (bounded) two-dimensional space. I assume that this is the case because in the case of the conference procedure, legislators consider no more than three bills (the status quo, their chamber’s original bill, and the reconciled bill). It is bounded because there are a finite number of legislators, and none of them have preferences that fall infinitely far away from the centroid of the space. In the strongest version of two-dimensionality, legislator preferences on the second dimension will have no correlation with preferences on the first dimension, and I assume that is true here. As before, their preferences take the standard spatial form, so legislators prefer bills closer to their ideal points more than bills further away.

Figures 5.1.1 and 5.1.2.

In a two dimensional space, a cut point becomes a cut line. That line intersects the axis that connects the status quo and the bill under consideration at the midpoint between the
two bills, and is perpendicular to that axis. A graphical example is presented in Figure 5.1.1. To understand why moving from one to two dimensions is not alone sufficient to explain the variance I observe in vote outcomes, consider how orthogonal shifts in the location of the compromise bill influences cut lines.

Suppose the status quo is to the left of the proposed bill and that both are located on the horizontal axis in the preference space. As with cut points, this would mean that any legislator with an ideal point to the left of the cut line will support the status quo, and any legislator to the right will support the bill. If a conference committee proposes a bill that makes an orthogonal shift away from original axis and directly above the original bill, the new cut line induced by the reconciled bill would cross the original cutline at some point above the original axis. This process is visible in Figure 5.1.2. Legislators with ideal points above the new cut line, and to the left of the original cut line will change their votes. In this case, they would change their vote from nay to yea. In contrast, legislators below the new cut line and to the right of the original cut line will change their votes from yea to nay. Critically, as long as b'_{i} is not further to the left than b_{i}, the space in which legislators switch their vote from yea to nay will always be bigger than the space where legislators switch their vote from nay to yea. So in this example, we would expect fewer yea votes on the second bill than on the first. Similarly, the orthogonal shift away from the original bill becomes more extreme, the differences between the two regions increases. In this same example, a similar logic allows us to conclude that any reconciled bill to the right of the original bill will produce a the same result. Hence, shifts from b_{i} to b' that are away from the original axis and away from the status quo, lead us to expect that fewer legislators supporting the reconciled bill in this chamber.
This relaxed assumption leads us to expect that the cell in which chambers both gain votes should be empty. Recall, that in this portion of the analysis I only relax the dimensionality assumption, I continue to assume that for at least one chamber, the compromised bill will be bounded by the location of the chambers’ original bills. Taken together this assumption from the original model and the relaxed dimensionality assumption are sufficient to conclude that for at least one chamber a bill will never gain support between initial and final passage of legislation. Since there are a non-trivial number of cases in which both chambers gain votes, moving from one dimension to two dimensions is not sufficient to explain the variance I find in the earlier analyses.

5.2 The Possible Impact of Faithless Conferrees

The scholars that asked “who wins in conference?” implicitly assumed that compromised bills would be bounded by the bills proposed by the House and Senate. Essentially, they claim that members of the conference committee would pursue strategy to bring the compromised bill closer to their chamber’s version of legislation. It is as though a chamber negotiator’s utility is maximized by policy located at the bill proposed by their chamber. It follows that any point in the interval between the chambers’ bills will be stable. In other words, for any point outside the interval there is exists an alternative point in the interval between bills that conferees from both chambers prefer. I explore the implications of relaxing that assumption here. In contrast to relaxing the dimensionality assumption, the observed patterns in roll call votes are consistent with the possibility that conference negotiators may have preferences that diverge from the bills initially passed by their chambers.
Since a majority of each chambers’ conferees must support a reconciled bill, we may assume that the pivotal legislators in conference are the median members of both chambers’ delegations. Thus, rather than binding the stable set of conference outcomes between \(b_S \) and \(b_H \), I assume that the median conferees’ ideal points represent the extreme possibilities for compromised bills. The policy proposed by the conference committee \(b' \) will be contained in the interval \([c, \bar{c}]\) where \(c = \min\{c_H, c_S\} \) and \(\bar{c} = \max\{c_H, c_S\} \) and \(c_H \) and \(c_S \) are the ideal points of the median conferee from the House or Senate.

The canonical model essentially assumed that \(c = \bar{b} \), and that \(\bar{c} = \bar{b} \), but consider the predictions of the model when the set of possible bills we expect to be reported out of conference \([c, \bar{c}]\) is not the same as \([b, \bar{b}]\). There are four arrangements of these intervals that lead to three types of predictions. If (1) \([c, \bar{c}]\) and \([b, \bar{b}]\) are disjoint, then I would expect that the compromise bill to fall outside of \([b, \bar{b}]\). This would lead to chambers gaining or losing votes in tandem. Alternatively, (2) \([c, \bar{c}]\) \(\subseteq\) \([b, \bar{b}]\). If this is true, we would expect the conference outcomes to match the predictions of the canonical model and result in zero sum outcomes in terms of vote totals and cut points. Finally, (3) \([c, \bar{c}]\) and \([b, \bar{b}]\) may intersect, or (4) \([b, \bar{b}]\) \(\subset\) \([c, \bar{c}]\). If this is the case, then roll call changes may be in tandem or zero sum. Hence, assuming that conferees ideal points differ from the the points derived from the location of \(b_H \) and \(b_S \), suggests outcomes that are at least consistent with the the findings presented earlier.

6 Conclusion

Conference committees could be considered the “essence of bicameralism” (Longly and Oleszek 1989). Understanding the conference provides critical insights into the most
important institutional feature of American legislative politics, bicameralism. In this paper, I have endeavored to show the limitations associated with some of the foundational thinking related to bargaining dynamics within conference committees.

Early work on the conference embraced the notion that “who wins” is the central question that must be on which further inquiry into the conference process should be predicated. Scholarship on wins and losses suggest clear patterns in roll call voting on the initial and final passage of bills. In particular, if one chamber wins, and another loses, one chamber necessarily gains votes and another chamber necessary loses votes. This is true because the reconciled bill falls between the bills initially passed by the House and Senate. Likewise, the cut point induced by the conference report must fall between the cut points induced by the bills initially passed in both chambers. These propositions can be tested empirically, and I showed that voting patterns and patterns in points of indifference during the 93rd to 108th Congresses did not match the predictions made by the canonical characterization of wins and losses.

Evidence suggests that we should develop a more nuanced model of reconciliation through conference committees. In future work, I plan to develop a formal model of conferee selection that can explain these biases and their resulting impact on legislative behavior.
Works Cited

Table 4.1.1: Ratios of bills that gained votes to the total number of bills with recorded votes in the House or Senate.

<table>
<thead>
<tr>
<th>Congress</th>
<th>Senate</th>
<th>House</th>
</tr>
</thead>
<tbody>
<tr>
<td>93rd Congress</td>
<td>17/34</td>
<td>35/53</td>
</tr>
<tr>
<td>94th Congress</td>
<td>6/27</td>
<td>28/55</td>
</tr>
<tr>
<td>95th Congress</td>
<td>11/24</td>
<td>38/62</td>
</tr>
<tr>
<td>96th Congress</td>
<td>11/23</td>
<td>17/31</td>
</tr>
<tr>
<td>97th Congress</td>
<td>7/17</td>
<td>6/15</td>
</tr>
<tr>
<td>98th Congress</td>
<td>5/11</td>
<td>11/24</td>
</tr>
<tr>
<td>99th Congress</td>
<td>2/6</td>
<td>1/11</td>
</tr>
<tr>
<td>100th Congress</td>
<td>6/14</td>
<td>13/27</td>
</tr>
<tr>
<td>101st Congress</td>
<td>4/11</td>
<td>9/24</td>
</tr>
<tr>
<td>102nd Congress</td>
<td>7/12</td>
<td>15/34</td>
</tr>
<tr>
<td>103rd Congress</td>
<td>11/17</td>
<td>13/25</td>
</tr>
<tr>
<td>104th Congress</td>
<td>11/24</td>
<td>20/35</td>
</tr>
<tr>
<td>105th Congress</td>
<td>5/9</td>
<td>13/29</td>
</tr>
<tr>
<td>106th Congress</td>
<td>6/12</td>
<td>20/34</td>
</tr>
<tr>
<td>107th Congress</td>
<td>4/13</td>
<td>6/17</td>
</tr>
<tr>
<td>108th Congress</td>
<td>3/5</td>
<td>7/15</td>
</tr>
<tr>
<td>109th Congress</td>
<td>6/9</td>
<td>5/8</td>
</tr>
<tr>
<td>110th Congress</td>
<td>–</td>
<td>4/5</td>
</tr>
<tr>
<td>Total</td>
<td>122/268</td>
<td>263/506</td>
</tr>
</tbody>
</table>
Table 4.1.2 Changes in Vote Totals Between Initial and Final Passage Votes.

<table>
<thead>
<tr>
<th></th>
<th>Senate Bills that Lost Votes</th>
<th>Senate Bills that Gained Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>House Bills that Lost Votes:</td>
<td>50</td>
<td>31</td>
</tr>
<tr>
<td>House Bills that Gained Votes:</td>
<td>42</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>59</td>
</tr>
</tbody>
</table>

\[\chi^2 = 0.04712, \text{Pr.} = 0.8282 \]

Table 4.2 Changes in Cut Point Location Between Initial and Final Passage Votes.

<table>
<thead>
<tr>
<th></th>
<th>Senate Bills that Shifted Down</th>
<th>Senate Bills that Shifted Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>House Cut Points with - Shift:</td>
<td>40</td>
<td>21</td>
</tr>
<tr>
<td>House Cut Points with + Shift:</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>62</td>
</tr>
</tbody>
</table>

\[\chi^2 = 5.205, \text{Pr.} = 0.02252 \]
Figure 3.1

\[
\begin{array}{c}
\bar{b} & \frac{1}{2}b + \frac{1}{2}\bar{b} & \bar{b}
\end{array}
\]

Figure 3.2

\[
\begin{array}{c}
q & b_i \\hline
\end{array}
\]

\[1/2q + 1/2b_i = x_k\]
\textbf{Figure 5.1.1}

\textbf{Figure 5.1.2}