Part 4: Microscopic nuclear structure and reaction theory

4.1 Nucleon-Nucleon (NN) interaction

There are several approaches to obtain the NN interaction potential. Most important are these:

a) construct V_{NN} from general invariance principles. We will see that this predicts the spin- and isospin-dependence, but not the radial dependence of the potential.

b) from meson-exchange theories, the dominant term at large r is the "one-pion exchange potential" (OPEP).

In 1941, Eisenbud and Wigner gave a very general discussion of the mathematical structure of V_{NN} based on invariance principles in physics. They assumed a potential of the form

$$V_{NN}(\vec{r}_1,\vec{r}_2, \vec{p}_1, \vec{p}_2, \vec{s}_1, \vec{s}_2, \vec{t}_1, \vec{t}_2).$$

Symmetry requirements:

- Translational inv.: $\vec{r}_i \rightarrow \vec{r}_i + \vec{a}$, const. vector
- V_{NN} depends only on relative distance vector
 $$\vec{r} \equiv \vec{r}_1 - \vec{r}_2$$
\[V_{NN} = V_{NN} \left(\vec{r}, \vec{p}_1, \vec{p}_2 \right) \]

- Galilei inv.:
 \[\vec{p} \rightarrow \vec{p} + \vec{P}_0 \]
 const. vector

\[\Rightarrow \text{V}_{NN} \text{ depends only on rel. momentum} \]

\[\vec{P} = \vec{p}_1 - \vec{p}_2 \]

\[\Rightarrow \text{V}_{NN} = V_{NN} \left(\vec{r}, \vec{p}_1, \vec{p}_2, \vec{r}_1, \vec{r}_2 \right) \]

- approx. charge indep. of strong int.
 V isospin scalar expts. reveal that for the strong part of \(V_{NN} \)

\[V_{pp} \approx V_{nn} \approx V_{np} \]

\[\Rightarrow \text{invar. under rotation in isospin space \ V isospin scalar. Possible scalars:} \]

\[\begin{align*}
 \hat{\tau}_i^z = \hat{\tau}_i \cdot \tau_c \quad (i = 1, 2) \\
 = 3 \quad \text{(trivial constants)} \\
 \hat{\tau}_1 \cdot \hat{\tau}_2
\end{align*} \]

\[\Rightarrow \begin{align*}
 \left\{ \begin{array}{c}
 \text{const.} \\
 i = 1, 2
\end{array} \right\}
\end{align*} \]

Hence, \(V_{NN} \) has the form

\[V_{NN} = v_1 \left(\vec{r}, \vec{p}_1, \vec{r}_1, \vec{r}_2 \right) + v_2 \left(\vec{r}, \vec{p}_1, \vec{r}_1, \vec{r}_2 \right) \hat{\tau}_1 \cdot \hat{\tau}_2 \]

- Rotational inv:

 The generators of rotations are the ang. momentum operators.
 Rot. inv. implies that all terms in \(v_{12} \left(\vec{r}, \vec{p}_1, \vec{r}_1, \vec{r}_2 \right) \) above must be constructed to have a total ang. momentum of zero, i.e., they must be scalars in the combined
(coordinate + spin)-space! There is a very large number of scalars that can be formed from \((\hat{r}, \hat{p}, \hat{s}_1, \hat{s}_2)\), e.g.
\[
\hat{r} \cdot \hat{r} = r^2, \quad \hat{s}_1 \cdot \hat{s}_2, \quad \hat{s}_1 \cdot \hat{r}, \quad \hat{s}_1 \cdot \hat{p}, \quad \hat{s}_2 \cdot (\hat{r} \times \hat{p}), \quad \hat{r} \cdot (\hat{s}_1 \times \hat{s}_2), \quad \hat{p} \cdot (\hat{s}_1 \times \hat{s}_2), \quad \text{etc.}
\]

These possible combinations can be reduced further by 2 additional requirements:

- **Parity Inv. \((\mathcal{P})\):**

 \[
 \Rightarrow v(\hat{r}, \hat{p}, \hat{s}_1, \hat{s}_2) \xrightarrow{\mathcal{P}} v(-\hat{r}, -\hat{p}, \hat{s}_1, \hat{s}_2)
 \]

- **Time-reversal Inv. \((\mathcal{T})\):**

 \[
 \Rightarrow \tilde{v}(\hat{r}, \hat{p}, \hat{s}_1, \hat{s}_2) \xrightarrow{\mathcal{T}} v(\hat{r}, -\hat{p}, -\hat{s}_1, -\hat{s}_2)

 \text{note that the spins must transform like } \hat{s} = \hat{r} \times \hat{p}.

 \]

This rules out the fall combinations above:

\[
\begin{align*}
\hat{s}_i \cdot \hat{p} & \quad \text{(not } \mathcal{P} \text{-inv.)} \\
\hat{r} \cdot \hat{p} & \quad \text{(not } \mathcal{T} \text{-inv.)} \\
\hat{r} \cdot (\hat{s}_1 \times \hat{s}_2) & \quad \text{(not } \mathcal{P} \text{-inv.)} \\
\hat{p} \cdot (\hat{s}_1 \times \hat{s}_2) & \quad \text{(violates both } \mathcal{P} \text{ and } \mathcal{T}).
\end{align*}
\]

This leaves us with these building blocks for \(v_1, v_2\):

\[
v(\hat{r}, \hat{p}, \hat{s}_1, \hat{s}_2) \propto \begin{cases}
 r^2 \text{ v arb. fn in } f(r) \\
 \hat{s}_1 \cdot \hat{s}_2 \\
 \hat{s}_1 \cdot \hat{r} \\
 \hat{s}_1 \cdot (\hat{r} \times \hat{p}) \end{cases} \quad \text{for } i = 1, 2
\]
The last term contains the possibility of a strong spin-orbit interaction, because

\[\mathbf{Z} \cdot \mathbf{S} = (\mathbf{r} \times \mathbf{p}) \cdot \frac{1}{2} (\mathbf{\hat{s}}_1 + \mathbf{\hat{s}}_2) \]

Argonne \(v_{18} \) NN-potential

This potential was developed by physicists at Argonne Nat. Lab. and it is composed of 18 terms — hence the name.

\[V_{NN} (\mathbf{r}, \mathbf{p}, \mathbf{\hat{s}}_i, \mathbf{\hat{c}}_i) = \sum_{k=1}^{18} v_k (r) O_k \]

Note that one cannot obtain any information about the radial factors \(v_k (r) \) from invariance principles. One either needs to obtain these from meson exchange (see below) or from exp. N-N scattering data. Here are some of the important terms:

\[O_1 = 1 \quad (" central component" \equiv c) \]
\[O_2 = \mathbf{\hat{r}} \cdot \mathbf{\hat{c}} \quad (" isospin component" \equiv \mathbf{\hat{t}}) \]
\[O_3 = \mathbf{\hat{s}}_1 \cdot \mathbf{\hat{s}}_2 \quad (" spin component" \equiv \mathbf{\hat{s}}) \]
\[O_4 = (\mathbf{\hat{s}}_1 \cdot \mathbf{\hat{s}}_2) (\mathbf{\hat{r}} \cdot \mathbf{\hat{c}}) \quad (" spin-isospin component" \equiv \mathbf{\hat{t}} \cdot \mathbf{\hat{s}}) \]

The radial factors corresponding to these 4 terms, i.e. \(v_1, v_2, v_3, v_4 (r) \), are shown in fig. 6 of the above paper. ⇒ slide 2
Another possible combination that can be constructed from the invariant blocks discussed above is the "tensor operator" S_{12} defined as

$$S_{12} = 3 \left(\hat{\sigma}_1 \cdot \vec{r} \right) \left(\hat{\sigma}_2 \cdot \vec{r} \right) - \hat{\sigma}_1 \cdot \hat{\sigma}_2$$

Note that this operator is a second-rank tensor in either the spin-space or in conf. space alone, but a scalar in the combined conf. + spin space!

We observe that this tensor op. has the same form as the interaction potential between 2 magnetic dipoles:

$$V_{\text{magn. dipole}} \propto \frac{1}{r^3} \left[3 \left(\hat{\mu}_1 \cdot \vec{r} \right) \left(\hat{\mu}_2 \cdot \vec{r} \right) - \hat{\mu}_1 \cdot \hat{\mu}_2 \right]$$

A simple "geometric" interpretation of S_{12} is that it depends on the angle between the 2 spins ($\hat{\sigma}_1 \cdot \hat{\sigma}_2$) and on the angle between \vec{r} and $\hat{\sigma}_i$:

One can show that the tensor force has a vanishing angular average, i.e. $\int d\Omega S_{12} = 0$.

We already mentioned in the section that the N-N interaction arises from virtual meson exchange, discuss slide 16 in this section.
and from the energy-time uncertainty relation \(\Delta E \cdot \Delta t \approx \hbar \), we found that the range of the force, \(\Delta r \), is of order of the Compton wavelength of the meson (\(\lambda_c \)):

\[
\Delta r \approx \lambda_c = \frac{\hbar c}{m c^2} = \frac{197.3 \text{ MeV fm}}{m c^2(\text{meson})}
\]

This implies the following:

a) at large distances, \(V_{\text{NN}} \) is dominated by the lowest-mass meson, the pion with \(m c^2 \approx 140 \text{ MeV} \), resulting in a range of

\[
(\Delta r)_\pi = \frac{197.3 \text{ MeV fm}}{140 \text{ MeV}} \approx 1.4 \text{ fm} = 2 \lambda_c
\]

b) at intermediate distance, we can either have two-pion exchange or \(f_0/\phi \)-meson exchange.

c) at short distances, we have heavier meson exchange (\(\rho, \omega, \phi \)).

The "OPEP" potential

From the Feynman diagram on the left one can determine the one-pion exchange potential (OPEP) in the static limit (details: Bjorken & Drell, "Rel. Quantum Mechanic").
one finds

\[V_{0\text{pep}}(\hat{r}_1, \hat{e}_1, \hat{e}_2, \hat{\tau}_1, \hat{\tau}_2) = f_1(r)(\hat{e}_1 \cdot \hat{e}_2)(\hat{\tau}_1 \cdot \hat{\tau}_2) + f_2(r)(\hat{\tau}_1 \cdot \hat{\tau}_2) S_{12} \]

with \(f_1(r) = 0.088 \cdot \left(\frac{m_\pi c^2}{3} \right) \frac{e^{-r/\lambda_\pi}}{(r/\lambda_\pi)} \)

and \(f_2(r) = 0.088 \cdot \left(\frac{m_\pi c^2}{3} \right) \frac{e^{-r/\lambda_\pi}}{(r/\lambda_\pi)} \left[1 + \frac{3}{(r/\lambda_\pi)^2} + \frac{3}{(r/\lambda_\pi)^3} \right] \)

where the pion rest energy is \(m_\pi c^2 \approx 140 \text{ MeV} \) and \(\lambda_\pi \approx 1.4 \text{ fm} \).

The term

\[\frac{e^{-r/\lambda_\pi}}{(r/\lambda_\pi)} \]

is the famous "Yukawa potential" predicted by Yukawa in 1935! We see that the first term in \(V_{0\text{pep}} \) contributes to the "spin-isospin component" \(O_4 = (\hat{e}_1 \cdot \hat{e}_2)(\hat{\tau}_1 \cdot \hat{\tau}_2) \) term (for

in the Argonne \(v_{18} \) potential, see slide 2).

We introduce now further terms in \(v_{18} \):

\[O_5 = S_{12} \] ("tensor" part, labeled \(t \))
\[O_6 = S_{12}(\hat{\tau}_1 \cdot \hat{\tau}_2) \] ("tensor-isospin" part \(\tilde{t} \tilde{c} \))
\[O_7 = \vec{L} \cdot \vec{S} \] ("spin-orbit" part \(l s \))
\[O_8 = \vec{L} \cdot S(\hat{\tau}_1 \cdot \hat{\tau}_2) \] ("spin-orbit isospin" part \(l s \tilde{c} \))

+ other terms

Apparently, \(V_{0\text{pep}} \) contributes also a tensor-isospin component to \(v_{18} \). The radial part of the \(O_5 \) and \(O_6 \) terms (labeled \(t \) and \(t \tilde{c} \)) are shown in slide 3. It also
displays the OPEP contribution to the "\(t \epsilon \)" term \(o_6 \).

Discuss slide \(4 \): radial part for spin-orbit term \(O_7 \) \((\vec{r} \cdot \vec{s}) \) and \(O_8 \) \((\vec{r} \cdot \vec{s} (\vec{r} \cdot \vec{r}_i)) \) in Argonne \(v_{18} \) potential.

Can we understand the spin-orbit term on the basis of meson exchange theory? Yes! The following table gives the mesons and the type of interaction potential \(V_{NN} \) that they generate [Greiner & Hämmerle textbook, p. 213]:

<table>
<thead>
<tr>
<th>Meson ((J^P))</th>
<th>Name</th>
<th>(V_{NN}) Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar ((0^+))</td>
<td>"(\sigma)-meson" (f_0/5)</td>
<td>(s_1, \vec{r} \cdot \vec{s})</td>
</tr>
<tr>
<td>Pseudoscalar ((0^-))</td>
<td>(\pi, \eta, \eta')</td>
<td>(s_{12})</td>
</tr>
<tr>
<td>Vector ((1^-))</td>
<td>(\omega, \phi)</td>
<td>(s_{12}, \vec{r} \cdot \vec{s}, \vec{r}_1 \cdot \vec{r}_2)</td>
</tr>
</tbody>
</table>

\(N-N \) quantum states and \(\text{WF}'s \)

We define the following quantities for the \(N-N \) pair:

\(\vec{r} = \vec{r}_1 - \vec{r}_2 = \text{rel. distance} \)

\(\vec{p} = \vec{p}_1 - \vec{p}_2 = \text{rel. momentum} \)

\(\vec{L} = \vec{r} \times \vec{p} = \text{rel. orbital \(\text{ang. mom.} \)} \)

\(\vec{S} = \frac{1}{2} (\vec{s}_1 + \vec{s}_2) = \text{spin of } N-N \text{ pair} \)

\(\vec{J} = \vec{L} + \vec{S} = \text{total \(\text{ang. mom.} \) of } N-N \text{ pair} \)

\(\vec{I} = \frac{1}{2} (\vec{I}_1 + \vec{I}_2) = \text{isospin of } N-N \text{ pair} \).