Nuclear chart, “magic” proton and neutron numbers, measured half-life ranges
NUBASE evaluation: exp. decay modes
History of radioactivity

- **Henri Becquerel** (1890's) discovers that various uranium salts emit unknown "rays" that penetrate paper and expose photographic plate.

- **Marya Sklodovska ↔ Marie Curie** (1896) works with "pitchblende" (mixture of uranium ore and others), isolates two new chemical elements that are highly "ray-producing" (= radioactive):

 - **radium** ($Z=88$), this element is a million times more radioactive than natural uranium, and

 - **polonium** ($Z=84$), named after her home country Poland.
History of radioactivity

Marie Curie won two Nobel prizes:
1903 in physics (radioactivity), with husband Pierre Curie
1911 in chemistry (two new elements, Po and Ra)

Her daughter Irène Joliot-Curie and her son-in-law
Frédéric Joliot-Curie also won Nobel prize,
in chemistry (1935)
Nuclear decay modes: α decay (helium-4 emission)

- in heavy nuclei, α particles form in nuclear surface region
- α particles tunnel through potential barrier formed by Coulomb + strong nuclear interaction

Example:

\[^{238}_{92} U \rightarrow ^{234}_{90} Th + ^{4}_{2} He \]

uranium \hspace{1cm} thorium \hspace{1cm} α

“parent” nucleus (Z,N) \rightarrow “daughter” nucleus (Z-2,N-2) + α

Note: total numbers of A, Z, and N conserved in α decay
The radioactive decay law

See related notes in section 2.1a

Topics:
decay rate, half-life, mean life, level width
activity $A(t)$ of radioactive substance
Theory of α decay: George Gamov (1928)
tunneling through a potential barrier

See related notes in section 2.1a
Nuclear decay modes: β^- decay (electron emission)

Basic weak interaction decay (note charge conservation):

neutron \rightarrow proton + electron + anti-neutrino

Example:

$^{234}_{90}$Th \rightarrow $^{234}_{91}$Pa + e$^-$ + anti-neutrino

thorium protactinium

“parent” nucleus (Z,N) \rightarrow “daughter” nucleus (Z+1,N-1) + …

Note: total number of A is conserved in β^- decay
β⁻ decay: interpretation in terms of quarks and W boson

neutron = (u d d), proton = (u u d)

d → u + W⁻

charges: -1/3 → +2/3 -1

neutron → proton
Nuclear decay modes: β^+ decay (positron emission)

Basic weak interaction decay (note charge conservation):

proton \rightarrow neutron + positron + neutrino

Example:

$^{13}_7 \text{N} \rightarrow ^{13}_6 \text{C} + e^+ + \text{neutrino}$

nitrogen \rightarrow carbon

“parent” nucleus (Z,N) \rightarrow “daughter” nucleus (Z-1,N+1) + …

Note: total number of A is conserved in β^+ decay

Practical application: positron emission tomography (PET)
Nuclear decay modes: gamma decay

\[
\begin{array}{c}
\text{J}_i \\
\downarrow \\
\text{photon (EL,ML)} \\
\downarrow \\
\text{J}_f
\end{array}
\]

Spontaneous photon emission is explained by quantum electrodynamics (QED). Even in the vacuum state, there are always zero-point vibrations of the electromagnetic fields which couple to the electric charges and currents of the nucleons, thus producing EM radiation.

Classical treatment: J.D. Jackson, Classical Electrodynamics, 3rd edition, chapter 9.11
QED treatment (brief summary): Shankar, QM, 2nd edition, p. 506-521

Angular momentum selection rules are determined by Clebsch-Gordan Coefficients (Wigner-Eckart theorem, see e.g. Shankar p. 420)
spontaneous fission: example Californium-252

\[{}^{252}_{98} \text{Cf} \rightarrow {}^{132}_{50} \text{Sn} + {}^{117}_{48} \text{Cd} + 3n \]

heavy fission
light fission
fragment
fragment

Sizable spontaneous fission is observed in heavy transuranic isotopes. For \(^{252}\text{Cf}\) one finds (Nuclear Wallet Cards, BNL, 2005):

- \(\alpha\)-decay probability = 96.91 %
- Spontaneous fission probability = 3.09 %
- Total half-life (mostly \(\alpha\)) = 2.645 years
- Spontaneous fission half life \(\approx 100\) years
Fission products from spontaneous fission of 252Cf

Figure 6. Distribution of the fission products from the spontaneous fission of 252Cf. Both peaks are centered on heavier mass than the equivalent peaks in uranium fission.
Fission mass distributions

spontaneous fission of 252Cf; thermal neutron fission of U and Pu

Ref: A.C. Wahl, Symposium on Physics and Chemistry of Fission (1965), IAEA, Vienna

The light mass group shifts to higher masses as the mass of the fissioning nucleus increases, while the heavy group remains nearly stationary. The shaded areas show the location of the closed shells of 50 protons, 50 neutrons, and 82 neutrons (see text).
Spontaneous fission half-lives of actinide isotopes vary by 22 orders of magnitude. For ^{252}Cf one obtains about 100 years.
Second frontier: superheavy elements in heavy-ion fusion reactions

Ref: National Nuclear Data Center, Brookhaven
Exp. discovery of superheavy element Z=117 at Dubna (Russia)
Vanderbilt physicists involved: Professors Hamilton and Ramayya

The isotopes $^{293}117$ and $^{294}117$ were produced in fusion reactions between $^{48}20\text{Ca}$ and $^{249}97\text{Bk}$. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with $Z \geq 111$, validating the concept of the long sought island of enhanced stability for superheavy nuclei.
Nuclear decay modes: exotic

Proton radioactivity: spontaneous p and $2p$ emission at proton dripline

Neutron radioactivity: spontaneous n and $2n$ emission at neutron dripline

“cluster emission” of heavier ions, e.g. 14C, 24Ne, …
Nuclear chart and the frontier of neutron-rich nuclei
Ref: Isotope Science Facility proposal, MSU (Nov. 2006)
Exp. data: neutron dripline for light nuclei (up to $Z=8$)

Figure 5. The part of the (N,Z) chart for the lightest nuclei. The neutron drip line has been reached only up to oxygen ($Z = 8$) where the heaviest particle-stable isotope has 16 neutrons. Interestingly, the heaviest isotope of fluorine ($Z=9$) known has 22 neutrons. That is, one additional proton binds at least six neutrons. Known halo nuclei are marked by red squares. A very elongated “dimer” configuration in 12Be has recently been found at higher excitation energies.