Section 9.2.1 Paraxial Approximation

Exercise: When dealing with a laser beam that consists of several transverse modes, it is frequently convenient to clean up the beam and suppress the higher-order modes by passing the beam through an aperture at the focus. This is called spatial filtering. Consider a circularly symmetric beam of radius \(w_0 \) at the focus passing through an aperture of radius \(a \) located at the focus. The incident beam consists of the fundamental mode with an admixture of the first higher mode, of the form

\[
\psi(r, z) = \frac{1}{w(z)} \left[1 + \epsilon \left(1 - \frac{2r^2}{w^2(z)} \right) \right] \exp \left[i \Phi(z) + i k \frac{r^2}{2R(z)} - \frac{r^2}{w^2(z)} \right]
\]

(a) Expand the beam beyond the aperture in the form

\[
\psi(r, z) = \sum_{n=0}^{\infty} \frac{b_n}{w(z)} I_n^0 \left(\frac{2r^2}{w^2(z)} \right) \exp \left[i \Phi_n^0 (z) + i k \frac{r^2}{2R(z)} - \frac{r^2}{w^2(z)} \right]
\]

and show that the amplitude of the \(n^{th} \) mode in the transmitted beam is

\[
b_n = (1 + \epsilon) f_n^{(0)} (x_0) - \epsilon f_n^{(1)} (x_0)
\]

where

\[
I_n^{(0)} (x_0) = \int_0^{x_0} L_n^0 (x) e^{-x} dx
\]

\[
I_n^{(1)} (x_0) = \int_0^{x_0} L_n^0 (x) xe^{-x} dx
\]

and \(x_0 = 2a^2 / w_0^2 \).

(b) Show that

\[
I_0^{(0)} (x_0) = 1 - e^{-x_0}
\]

\[
I_1^{(0)} (x_0) = x_0 e^{-x_0}
\]

\[
I_n^{(0)} (x_0) = \frac{x_0 e^{-x_0}}{n} L_{n-1}^1 (x_0)
\]

\[
I_0^{(1)} (x_0) = 1 - (1 + x_0) e^{-x_0}
\]

\[
I_1^{(1)} (x_0) = (1 + x_0 x_0^2) e^{-x_0} - 1
\]

\[
I_{n>1}^{(1)} (x_0) = \frac{x_0^2 e^{-x_0}}{n(n-1)} \left[(n-1) L_{n-1}^1 (x_0) - L_{n-2}^2 (x_0) \right]
\]
For $\varepsilon = 1$, the ratio b_2 / b_1 is plotted in the figure below, illustrating the effect of spatial filtering.