A group G is a finite or infinite set of elements together with the group operation (a set is said to be a group "under" this operation).

IF:

1. **Closure:** If $A \in G$ and $B \in G \Rightarrow AB \in G$

2. **Associativity:** The group operation (multiplication) is associative

 $\forall A, B, C \in G \quad (AB)C = A(BC)$

3. **Identity:** There is identity element

 $I (= 1, e, E)$

 $\forall I \in G \quad \forall A \in G \quad IA = AI = A$

4. **Inverse:** There must be an inverse of each element

 $\forall B \in G \quad \forall A \in G \quad AB = BA = I \Rightarrow B = A^{-1}$

A group must contain at least one element

Trivial group

If there is a finite number of elements (group order)

Finite group (symmetric group S_n of permutations)

A subset of a group that is also a group

Subgroup

Continuous group (Lie group) rotations in $SO(3) (= \mathbb{R}_3)$
Symmetry Operations and Character Tables

All the character tables are laid out in the same way, and some pre-knowledge of group theory is assumed. In brief:

- The top row and first column consist of the symmetry operations and irreducible representations respectively.
- The table elements are the characters.
- The final two columns show the first and second order combinations of Cartesian coordinates.
- Infinitesimal rotations are listed as I_x, I_y, and I_z.

The notation for the symmetry operations is as follows:

- **E**: The identity transformation (E coming from the German Einheit, meaning unity).
- **C_n**: Rotation (clockwise) through an angle of $2\pi/n$ radians, where n is an integer. The axis for which n is greatest is termed the principle axis.
- **C_{nk}**: Rotation (clockwise) through an angle of $2k\pi/n$ radians. Both n and k are integers.
- **S_n**: An improper rotation (clockwise) through an angle of $2\pi/n$ radians. Improper rotations are regular rotations followed by a reflection in the plane perpendicular to the axis of rotation. Also known as alternating axis of symmetry and rotation-reflection axis.
- **i**: The inversion operator (the same as S_2). In Cartesian coordinates, $(x, y, z) \rightarrow (-x, -y, -z)$. Irreducible representations that are even under this symmetry operation are usually denoted with the subscript g for gerade (german=even), and those that are odd are denoted with the subscript u for ungerade (german=odd).
- **σ**: A mirror plane (from the German word for mirror - Spiegel).
 - **σ_h**: Horizontal reflection plane - passing through the origin and perpendicular to the axis with the 'highest' symmetry.
 - **σ_v**: Vertical reflection plane - passing through the origin and the axis with the 'highest' symmetry.
 - **σ_d**: Diagonal or dihedral reflection in a plane through the origin and the axis with the 'highest' symmetry, but also bisecting the angle between the twofold axes perpendicular to the symmetry axis. This is actually a special case of σ_v.

http://newton.ex.ac.uk/people/goss/symmetry/CharacterTables.html
HOW TO APPLY POINT GROUP THEORY TO PROBLEMS OF QUANTUM MECHANICS?

REDUCIBLE AND IRREDUCIBLE REPRESENTATIONS

\[H \psi = E \psi \]
\[E : \{ \psi_1, \psi_2, \ldots, \psi_g \} \]
- \(g \)-fold degeneracy
- \(g \)-linearly independent functions (different)

\[H(c_1 \psi_1 + c_2 \psi_2 + \ldots + c_g \psi_g) = E(c_1 \psi_1 + c_2 \psi_2 + \ldots + c_g \psi_g) \]

Group of Symmetry of Hamiltonian

\[[P, H] = 0 \]

\[\hat{P} H \psi_i = H \hat{P} \psi_i = E \hat{P} \psi_i \]

\(\hat{P} \psi_i \) is also eigenfunction for the same energy \(E \)

!?!

Symmetry Operations

The same conclusion is valid for

\[R \psi_i, S \psi_i, \ldots \]

They have to be linearly dependent!

\[\hat{P} \psi_i(\text{xyz}) = P_{i1} \psi_1(\text{xyz}) + P_{i2} \psi_2(\text{xyz}) + \ldots + P_{ig} \psi_g(\text{xyz}) \]

For all symmetry operations and all functions

\[D(\hat{P}) = \begin{pmatrix}
P_{11} & P_{12} & \ldots & P_{1g} \\
P_{21} & P_{22} & \ldots & P_{2g} \\
\vdots & \vdots & \ddots & \vdots \\
P_{g1} & P_{g2} & \ldots & P_{gg}
\end{pmatrix} \]

\[D(\hat{Q}) = \begin{pmatrix}
Q_{11} & Q_{12} & \ldots & Q_{1g} \\
Q_{21} & Q_{22} & \ldots & Q_{2g} \\
\vdots & \vdots & \ddots & \vdots \\
Q_{g1} & Q_{g2} & \ldots & Q_{gg}
\end{pmatrix} \]

\[D(\hat{R}) = \ldots \]

Matrix representation of symmetry operations of group \(G \)

\[\{ \psi_1, \psi_2, \ldots, \psi_g \} \]

- Basis of representation
- \(g \)-dimension
Symmetry Group
\(\hat{P}, \hat{Q}, \hat{R}, \hat{S}, \ldots \in G \)

Group of Matrices
Matrix Representation \(T' \)
\[D(P), D(Q), D(R), D(S), \ldots \]

Group Operation = Multiplication of Matrices

Isomorphism 1:1

Matrix Representation \(D' \) is reducible
Each set of \(D_1'(P), D_1'(Q), \ldots \) is also a matrix repr. of group \(G \)

This is irreducible representation

\[T = T_1' + T_2' + \ldots T_s' \]

Reducible repr.
Irreducible repr.
(Smallest dimensions)

Symbols:
\[A, B - 1\text{-dim. repr.} \]
\[E - 2\text{-dim.} \]
\[T - 3\text{-dim.} \]

(One element)
\((2 \times 2) \)
\((3 \times 3) \)

Transformation properties of \(\psi_1, \psi_2, \ldots \psi_q \) under symmetry operations of group \(G \).

Instead of quantum numbers!
SYMBOLS:
\[C_n \psi^2 = \psi^2 \]

Rotation around the principle axis

- \(A \): \(C_n \psi = +\psi \)
- \(B \): \(C_n \psi = -\psi \)

J (Inversion)

- \(\gamma \psi = +\psi \)
- \(\gamma \psi = -\psi \)

Even Parity

- \(\psi \downarrow \)

Odd Parity

- \(\psi \uparrow \)

In the case of product \(G \times C_n (E, \sigma_h) \)

- \(\sigma_h \psi = +\psi \)
- \(\sigma_h \psi = -\psi \)

Reprs. \(A', B', \ldots \)

Example. Are the orbitals \(p_x, p_y, p_z \) the basis functions of the representation of \(D_{3h} \)?

If so — is it reducible or irreducible representation?

\[
\begin{align*}
\psi_{m10} &= R_{m1}(r) \frac{3}{14\pi} \cos \psi \\
\psi_{m11} &= R_{m1}(r) \frac{3}{18\pi} \sin \psi \cos \psi \\
\psi_{m1-1} &= R_{m1}(r) \frac{3}{18\pi} \sin \psi \sin \psi \\
\end{align*}
\]

=>

\[
\begin{align*}
P_z(r) &= \frac{1}{12} \psi_{m10} = x f(r) \\
P_x(r) &= \frac{1}{2} (\psi_{m11} + \psi_{m1-1}) = x f(r) \\
P_y(r) &= \frac{1}{2i} (\psi_{m11} - \psi_{m1-1}) = y f(r)
\end{align*}
\]

Functions with defined spatial properties

\[D_3 \; \{ E, C_3^+, C_3^-, C_2a, C_2b, C_2c \} \]

Group Order = 6

SO3: Sulfur Trioxide

- **C3**
- **C3'**
- **C3''**
D₃

E: \(x = x', \; y = y', \; z = z' \)

\(\hat{C}^{-1}_3: x = -\frac{1}{2} x' - \frac{1}{2} \sqrt{3} y', \; y = \frac{1}{2} \sqrt{3} x' - \frac{1}{2} y', \; z = z' \)

\(C_2': x = -\frac{1}{2} x' + \frac{1}{2} \sqrt{3} y', \; y = -\frac{1}{2} \sqrt{3} x' - \frac{1}{2} y', \; z = z' \)

\(C_{2a}: x = -x', \; y = y', \; z = -z' \)

\(C_{2b}: x = \frac{1}{2} x' + \frac{1}{2} \sqrt{3} y', \; y = \frac{1}{2} \sqrt{3} x' - \frac{1}{2} y', \; z = -z' \)

\(C_{2c}: x = \frac{1}{2} x' - \frac{1}{2} \sqrt{3} y', \; y = -\frac{1}{2} \sqrt{3} x' - \frac{1}{2} y', \; z = -z' \)

\[\begin{align*}
 p_x &= x f(r) \\
 p_y &= y f(r) \\
 p_z &= z f(r)
\end{align*} \]

Are they transformed into themselves?

\(C_3^{-1} (p_x) = C_3^{-1} x f(r) = \left\{ -\frac{1}{2} x' f(r') + \frac{1}{2} \sqrt{3} y' f(r') \right\} = -\frac{1}{2} p_x + \frac{1}{2} \sqrt{3} p_y \)

\(C_3^{-1} (p_y) = C_3^{-1} y f(r) = \left\{ -\frac{1}{2} \sqrt{3} x' f(r') - \frac{1}{2} y' f(r') \right\} = -\frac{1}{2} \sqrt{3} p_x - \frac{1}{2} p_y \)

\(C_3^{-1} (p_z) = C_3^{-1} z f(r) = \{ z' f(r) \} = p_z \)

\[C_3^{-1} (p_x p_y p_z) = (p_x p_y p_z) \begin{pmatrix}
 -\frac{1}{2} & -\frac{1}{2} \sqrt{3} & 0 \\
 \frac{1}{2} \sqrt{3} & -\frac{1}{2} & 0 \\
 0 & 0 & 1
\end{pmatrix} = (p_x p_y p_z) D(C_3^{-1}) \]

Matrix representation in the \(p_x p_y p_z \) basis

\(D(C_3') = \begin{pmatrix}
 -\frac{1}{2} & \frac{1}{2} \sqrt{3} & 0 \\
 -\frac{1}{2} \sqrt{3} & -\frac{1}{2} & 0 \\
 0 & 0 & 1
\end{pmatrix} \quad D(E) = \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{pmatrix} \)

\(D(C_{2a}) = \begin{pmatrix}
 -1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & -1
\end{pmatrix} \quad D(C_{2b}) = \begin{pmatrix}
 \frac{1}{2} & \frac{1}{2} \sqrt{3} & 0 \\
 \frac{1}{2} \sqrt{3} & -\frac{1}{2} & 0 \\
 0 & 0 & 1
\end{pmatrix} \quad D(C_{2c}) = \begin{pmatrix}
 \frac{1}{2} & -\frac{1}{2} \sqrt{3} & 0 \\
 -\frac{1}{2} \sqrt{3} & -\frac{1}{2} & 0 \\
 0 & 0 & 1
\end{pmatrix} \)

Is it reducible or irreducible representation?