1. A vapor pressure of 177.95 torr is measured for a solution of ethanol (eth) and chloroform (chl) at 45°C having $x_{\text{eth}} = 0.9900$. The vapor pressure of pure ethanol at this temperature is 172.76 torr.

(a) Treating the solution as ideally dilute, determine the partial pressures and gas phase mole fractions of both components in the vapor phase.

(b) Obtain the Henry's law constant for chloroform in ethanol at 45°C.

(c) Calculate $\mu_{\text{chl}, \text{l}} - \mu_{\text{chl}, \text{v}}$ for chloroform in ethanol at 45°C.

(d) The vapor pressure is 183.38 torr when x_{eth} is decreased to 0.9800, and the mole fraction of ethanol in the vapor phase is 0.9242. Calculate the Convention II activity coefficients for both components in this solution. (Is there a problem with these results?)

2. A simple binary solution is one for which $\Delta G_{\text{mix}} = RT \ln x_A + n_B \ln x_B + (n_A + n_B) x_A x_B W(T,P)$ at constant T and P, where $W(T,P)$ is a function of T and P. Theory shows that when the A and B molecules are approximately spherical and have similar sizes, the solution should be approximately simple. For a simple solution,

(a) Find expressions for ΔH_{mix}, ΔS_{mix}, and ΔV_{mix}.

(b) Show that $\mu_A = \mu_A^* + RT \ln x_A + W x_B^2$, with a similar equation for μ_B.

(c) Obtain expressions for the vapor partial pressures P_A and P_B, assuming ideal vapor.

3. The following data are available for solutions of acetone (ace) and chloroform (chl) at 50.0°C:

<table>
<thead>
<tr>
<th>$x_{\text{ace,l}}$</th>
<th>0.00</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
<th>0.80</th>
<th>0.90</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{\text{ace,v}}$</td>
<td>0.00</td>
<td>0.071</td>
<td>0.165</td>
<td>0.279</td>
<td>0.408</td>
<td>0.550</td>
<td>0.684</td>
<td>0.789</td>
<td>0.890</td>
<td>0.955</td>
<td>1.000</td>
</tr>
<tr>
<td>P_{tot}(torr)</td>
<td>521</td>
<td>495</td>
<td>474</td>
<td>463</td>
<td>460</td>
<td>469</td>
<td>489</td>
<td>511</td>
<td>540</td>
<td>576</td>
<td>612</td>
</tr>
</tbody>
</table>

(a) For the case $x_{\text{ace,l}} = 0.70$, calculate (i) $\mu_i - \mu_i^*$ for each component; (ii) ΔG_{mix} for preparing 2.34 mol of this solution; and (iii) ΔG_{mix} for 2.34 mol of the corresponding ideal solution.

(b) Calculate and plot γ_I for both components, over the full range of composition.

(c) Calculate γ_{II} for both components, taking acetone as the solvent. [Hint: See problem 10.8 in Levine.]

4. Use your data and results just above for acetone/chloroform solutions at 50°C to calculate G^E/n as a function of composition. Compare your results with Fig. 10.3b for 35.2°C. [Hint: See Problem 10.7 in Levine.]

5. In class we used information about saturated sucrose solutions to determine $\Delta G_{f,298}^*$ for sucrose (aq) on the molality scale (see p 281 of Levine). At saturation at 25°C and P^*, $\gamma_m = 2.87$ and $m = 6.05 \text{ m}^*$. The density of the saturated solution may be taken as 1.330 g/cm3, and that of water as 0.99707 gm/cm3.

(a) For this saturated solution, calculate a_m, γ_{II}, and a_{II}. [Hint: See Problem 10.10 in Levine.]

(b) Use results from problem 10.12 in Levine to determine γ_c and a_c for this same solution.

(c) Compare your results with Fig. 10.7.

6. Continuing with the previous problem, determine $\Delta G_{f,298}^*$, $\Delta H_{f,298}^*$, $\Delta S_{f,298}^*$, and $S_{m,298}^*$ for aqueous solutions of sucrose (a) on the mole fraction scale, and (b) on the concentration (molarity) scale.