Inversion of Sucrose

A. Reaction and Kinetics

- 1. $S + H^+ + H_2O \rightarrow F + G + H^+$ (i.e., acid-catalyzed)
- 2. Rate Law: $r = -d[S]/dt = k_H [H^+] [S] \equiv k_{eff} [S]$ (pseudo-first order because [H+] doesn't change)
- 3. Integrate: $-d[S]/[S] = k_{eff} dt \implies ln[S] = const k_{eff} t$
- 4. Boundary Condition: @ t = 0, $[S] = [S]_0 \Rightarrow \text{const} = \ln [S]_0$ $\Rightarrow [S] = [S]_0 \exp(-k_{\text{eff}} t)$ (first-order decay law)

B. Experiment

- 1. Measure α with polarimeter. But all 3 sugars are optically active, so α doesn't vanish when S is 100% converted.
- 2. Rather, $\alpha = A \exp(-k_{\text{eff}} t) + B$ (exponential + background)
- 3. t = 0: $\alpha (\equiv \alpha_0) = A + B$; $t = \infty$: $\alpha_\infty = B \quad (\alpha \text{ for } F + G)$

- 4. Specific rotation: $\alpha = [\alpha]_{\lambda}^{T}[] \ell$ units of $[\alpha]_{\lambda}^{T}$: degree L g⁻¹ dm⁻¹
- 5. Need one "completion" run to get α_{∞} .

C. Temperature Dependence

- 1. Arrhenius: $k = A \exp(-E_a/RT) \Rightarrow \ln k = \ln A E_a/RT$
- 2. Typical: Have k at two $Ts \Rightarrow k_2/k_1 = \exp[(E_a/R)(1/T_1 1/T_2)]$ $\ln(k_2/k_1) = (E_a/R)(1/T_1 - 1/T_2) \qquad \text{(don't need } A)$
- 3. Note: This is our second encounter with ln() = a + b/T. We will see it again in analyzing the T dependence of equilibrium constants (Expt. 5) and vapor pressure (Expt. 6).

In all such thermodynamic applications, T is in K.

Statistical Error Propagation

- A. Statistics Notes 3
- **B.** Statistics Problems 11-17
- C. Partial Differentiation

Exercises available at

http://www.vanderbilt.edu/AnS/Chemistry/Tellinghuisen/Chem236/PDExer.pdf

and solutions at

http://www.vanderbilt.edu/AnS/Chemistry/Tellinghuisen/Chem236/PDSoln.pdf

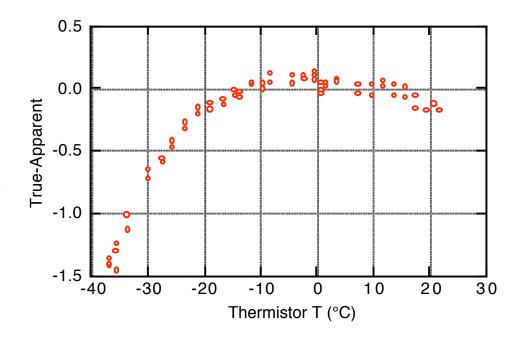
Today's Practice Quiz!

A quantity is known to follow a linear relationship, y = a + bx. If y = -1.51. when x = 0.2 and y = 111.7 when x = 8.9, what are the values of a and b?

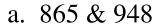
a.
$$a = -2.5$$
; $b = 5.0$

a.
$$a = -2.5$$
; $b = 5.0$ b. $a = -3.5$; $b = 10.0$ c. $a = -4.0$; $b = 12.7$

c.
$$a = -4.0$$
; $b = 12.7$


d.
$$a = -4.1$$
; $b = 13.0$ e. none of these

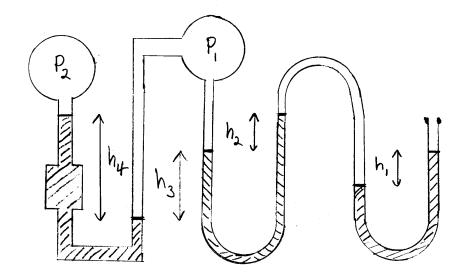
Student records a data point on 2. the sublimation curve of ice, where the thermistor reads -24.1°C. If the calibration data are as shown in the accompanying graph, what is the corrected T?



c. 0.4°C d. -0.5°C

e. This cannot be determined w/o additional information.

3. Refer to the accompanying figure of three connected Hg manometers. If atmospheric pressure is 754 torr, h_1 = 111 mm, h_2 = 83 mm, h_3 = 192 mm, and h_4 = 289 mm, what are the pressures P_1 and P_2 (in Torr)?



(b.) 948 & 659

c. 948 & 851

d. 560 & 849

- 4. If barometers used water as the operating fluid, a weather barometer would need to be about how tall? [1.00 m = 39.37 in.]
 - a. 5 ft
- b. 15 ft
- (c.) 40 ft
- d. 100 ft
- e. none of these
- 5. Besides the size problem, can you think of any other reason why water might be an unwise choice for a barometer?
 - a. It is transparent.
- b. It has significant vapor pressure.
- c. Mosquitoes can breed in H₂O but not in Hg.
- d. All of the above

e. None of the above