ITC Tutorial: Design of Experiments and Analysis of Data

> by

Joel Tellinghuisen
Department of Chemistry
Vanderbilt University
Nashville, TN 37235

The Plan of Attack

- "5-minute statistics":
- Linear least squares:
- Nonlinear least squares:
- Application to ITC:
- Systematic Errors:
- Beyond the "black box":

Means, variances, and probability distributions
The basics
What's new?
Optimizing parameters by least squares in
"experiment design" mode
Is the fit model right?
Changing things
Reporting results

5-Minute Statistics

Sampling

Theory

The mean

$$
\bar{x}=\langle x\rangle=\frac{1}{n} \square_{i=1}^{n} x_{i} \quad \square \square \equiv \square=\square \square_{\text {min }}^{x_{\text {max }}} x P(x) d x
$$

The variance

$$
s_{x}^{2}=\frac{1}{n \square 1} \square_{i=1}^{n} \square_{i}^{2} \quad\left(\square i=x_{i} \square \bar{x}\right) \quad \square_{x}^{2}=\square_{\min }^{c_{\max }}(x \square \square)^{2} P(x) d x
$$

The standard deviation

$$
s_{x} \quad \square_{x}
$$

The standard error (standard deviation in the mean)

$$
\frac{s_{x}}{\sqrt{n}} \quad \frac{\square_{x}}{\sqrt{n}}
$$

Probability Distributions

Uniform: $\quad P(x)=$ constant $(a \leq x \leq b) ; 0$ otherwise

Normal:

$$
P_{G}(\square, \square ; x)=\frac{1}{\square \sqrt{2 \square}} \exp \underset{\square}{\square} \frac{(x \square)^{2}}{2 \square^{2}}=
$$

Poisson: governs counting - $\square^{2}=\mu$ (= \# counts).
Chi-square ($\left[^{f}\right.$): sampling estimates of variances.
t-distribution:
confidence limits for sampling estimates of parameters.

NOTE: Poisson, \square^{f}, and t-distributions all

 become Gaussian in the limit of large \square (Poisson) or \square (degrees of freedom, $n-p$).
Important probabilities

$\underset{\square \square+2 \square}{\square+2 \square} P_{G}(\square ; \square ; x) d x=0.954$

Illustrations

- The uniform distribution is the basis of computer random number generators. By default, the range is $0<x<1$, for which $\square=1 / 2$ and $\square^{2}=1 / 12$. Let's check...

Minimum	$9.36 \mathrm{e}-05$
Maximum	0.99998742
Sum	5022.7734
Points	10000
Mean	0.50227734
Median	0.50219405
RMS	0.57845803
Std Deviation	0.28694843
Variance	0.082339402
Std Error	0.0028694843
Skewness	-0.0081906446
Kurtosis	-1.1866255

Closer look at the binning statistics

- Compare results for $N=10^{4}$ and 10^{2}.
- Recall $\square \approx \mathrm{n}$ (Poisson).
- Thus about $2 / 3$ of bin counts should fall within $\pm \square(32,3.2)$ of the expected values (Gaussian approx.).

Next, bin average of 2 random numbers

And now 12 ...

Stats for sum of 12

Results $\| \square$ the very important Central Limit Theorem: Distributions of sums become normal, no matter what the parent distribution, as long as it has finite variance.

