ITC Tutorial: Design of Experiments and Analysis of Data

by

Joel Tellinghuisen Department of Chemistry Vanderbilt University Nashville, TN 37235

The Plan of Attack

- "5-minute statistics":
- Linear least squares:
- Nonlinear least squares:
- Application to ITC:

- Systematic Errors:
- Beyond the "black box":

Means, variances, and probability distributions The basics

What's new?

Optimizing parameters by least squares in "experiment design" mode Is the fit model right? Changing things Reporting results

5-Minute Statistics Sampling Theory The mean $\overline{x} = \langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$ $\langle x \rangle \equiv \mu = \int_{x_{\min}}^{x_{\max}} x P(x) dx$ The variance $s_x^2 = \frac{1}{n-1} \sum_{i=1}^n \delta_i^2 \quad (\delta_i = x_i - \overline{x}) \qquad \sigma_x^2 = \int_{x_{\min}}^{x_{\max}} (x - \mu)^2 P(x) dx$ The standard deviation $\mathcal{O}_{\mathbf{x}}$ S_{χ} The standard error (standard deviation in the mean) $\frac{S_{\chi}}{\sqrt{n}}$ $\frac{O_x}{\sqrt{n}}$

Probability Distributions

Uniform: $P(x) = \text{constant} (a \le x \le b); 0 \text{ otherwise}$

Normal:
$$P_G(\mu,\sigma;x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Poisson: governs counting — $\sigma^2 = \mu$ (= # counts).

Chi-square (χ^2) :sampling estimates of variances.*t*-distribution:confidence limits for sampling
estimates of parameters.

NOTE: Poisson, χ^2 , and *t*-distributions all become Gaussian in the limit of large μ (Poisson) or *v* (degrees of freedom, *n*-*p*).

Important probabilities

$$\int_{\mu-\sigma}^{\mu+\sigma} P_G(\mu,\sigma;x) \, dx = 0.683$$

$$\int_{\mu-2\sigma}^{\mu+2\sigma} P_G(\mu,\sigma;x) \, dx = 0.954$$

$$\mu-2\sigma$$

Illustrations

The uniform distribution is the basis of computer random number generators. By default, the range is 0 < x < 1, for which $\mu = \frac{1}{2}$ and $\sigma^2 = \frac{1}{12}$. Let's check ...

Minimum	9.36e-05
Maximum	0.99998742
Sum	5022.7734
Points	10000
Mean	0.50227734
Median	0.50219405
RMS	0.57845803
Std Deviation	0.28694843
Variance	0.082339402
Std Error	0.0028694843
Skewness	-0.0081906446
Kurtosis	-1.1866255

Closer look at the binning statistics

- Compare results for $N = 10^4$ and 10^2 .
- Recall $\sigma \approx \sqrt{n}$ (Poisson).
- Thus about 2/3 of bin counts should fall within $\pm \sigma$ (32,3.2) of the expected values (Gaussian approx.).

Next, bin average of 2 random numbers

And now 12 ...

Stats for sum of 12

Minimum	2.6777
Points	10000
Mean	6.0038
Median	5.9946
RMS	6.0863
Std Deviation	0.9989
Variance	
Std Error	0.009988

Results the very important Central Limit Theorem: Distributions of sums become normal, no matter what the parent distribution, as long as it has finite variance.