Physisorption

A. Theory — Chemisorption: The Langmuir Isotherm

Theory for *physisorption* (the BET isotherm — for weak, or physical adsorption) is beyond the scope of this course. However, many elements of the theory arise also in the simpler theory of *chemisorption* (for strong binding to surfaces). Thus we will examine chemisorption.

- 1. Assumptions: (a) one available adsorption site for each adsorbed molecule, and one adsorbed layer; (b) rate of adsorption = rate of desorption.
- (a) N = # sites; $\theta =$ fractional occupancy. 2. *Definitions*: (b) k_a = adsorption rate constant; k_d = desorption rate constant; P = gas pressure.
- adsorption = $k_a P (1 \theta) N$; desorp. = $k_d \theta N$ 3. *Rates*:
- 4. Results: $\theta = k_a P/(k_d + k_a P) = bP/(1 + bP); b = k_a/k_d$. 5. *Application*: low $P - \theta \propto P$; high $P - \theta \rightarrow 1$; $\theta = v/v_{\text{monolaver}} \rightarrow v = v_{\text{m}} bP/(1 + bP).$

- **B.** Physisorption BET Model
 - Differences: (a) Binding interactions much weaker;
 (b) Multiple adsorption layers permitted;
 (c) 1st adsorption layer different from others.

2. Results:
$$v = \frac{v_m c x}{(1-x) [1+(c-1) x]}$$

$$x = P/P_0$$
 (P_0 = vapor P); c = constant.

C. Linearization

- 1. Not really necessary, with nonlinear LS available; but still often done.
- 2. Langmuir: $1/v = 1/v_{\rm m} + 1/(v_{\rm m} b P)$

3. BET:
$$\frac{x}{v(1-x)} = \frac{1}{v_m c} + \frac{(c-1)x}{v_m c}$$

D. Measurements

- 1. *V Calibration*: Need *V*s of vacuum system parts, and "cold volume" of cell; start with calibration cell of known *V* and use $P_1V_1 = P_2V_2$ (Boyle's Law).
- 2. *T of bath*: Measure P_0 of liq $N_2 \rightarrow \text{get } T$ of bath.
- 3. *v*: Add gas to vacuum manifold & measure *P*; open valve to cell, equilibrate, remeasure *P*;. repeat for each data point.
- 4. *units*: Traditionally v is given in STP cm³.

E. Analysis

- 1. Analyze using KG to fit both versions of equation.
- 2. Can treat P_0 as an adjustable parameter, or as known.

F. Illustrations

(Delete some high-P points)

