Physisorption

A. Theory - Chemisorption: The Langmuir Isotherm

Theory for physisorption (the BET isotherm - for weak, or physical adsorption) is beyond the scope of this course. However, many elements of the theory arise also in the simpler theory of chemisorption (for strong binding to surfaces). Thus we will examine chemisorption.

1. Assumptions: (a) one available adsorption site for each adsorbed molecule, and one adsorbed layer; (b) rate of adsorption $=$ rate of desorption.
2. Definitions:
(a) $N=$ \# sites; $\theta=$ fractional occupancy.
(b) $k_{a}=$ adsorption rate constant; $k_{d}=$ desorption rate constant; $P=$ gas pressure.
3. Rates: \quad adsorption $=k_{a} P(1-\theta) N$; desorp. $=k_{d} \theta N$
4. Results:

$$
\theta=k_{a} P /\left(k_{d}+k_{a} P\right)=b P /(1+b P) ; b \equiv k_{a} / k_{d} .
$$

5. Application: low $P-\theta \propto P$; high $P-\theta \rightarrow 1$;

$$
\theta \equiv v / v_{\text {monolayer }} \rightarrow v=v_{\mathrm{m}} b P /(1+b P)
$$

B. Physisorption - BET Model

1. Differences: (a) Binding interactions much weaker;
(b) Multiple adsorption layers permitted;
(c) 1st adsorption layer different from others.
2. Results: $\quad v=\frac{v_{m} c x}{(1-x)[1+(c-1) x]}$
$x=P / P_{0}\left(P_{0}=\right.$ vapor $\left.P\right) ; c=$ constant.
C. Linearization
3. Not really necessary, with nonlinear LS available; but still often done.
4. Langmuir: $\quad 1 / v=1 / v_{\mathrm{m}}+1 /\left(v_{\mathrm{m}} b P\right)$
5. BET:

$$
\frac{x}{v(1-x)}=\frac{1}{v_{m} c}+\frac{(c-1) x}{v_{m} c}
$$

D. Measurements

1. V Calibration: Need Vs of vacuum system parts, and "cold volume" of cell; start with calibration cell of known V and use $P_{1} V_{1}=P_{2} V_{2}$ (Boyle's Law).
2. T of bath: Measure P_{0} of liq $\mathrm{N}_{2} \rightarrow$ get T of bath.
3. v :

Add gas to vacuum manifold \& measure P; open valve to cell, equilibrate, remeasure P; repeat for each data point.
4. units: \quad Traditionally v is given in STP cm^{3}.
E. Analysis

1. Analyze using KG to fit both versions of equation.
2. Can treat P_{0} as an adjustable parameter, or as known.

F. Illustrations

(Delete some high-P points)

