Thermal Expansivity

A. Underpinning Purposes

1. Experience in using a *known* substance to calibrate a device, for subsequent application to an *unknown* substance.

2. Acquaintance with two simple devices — the *pycnometer* and the *dilatometer* — capable of giving very precise results for a fundamental physical property of liquid substances.

B. Theory

1. \[\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = \left(\frac{\partial \ln V}{\partial T} \right)_P \] and, since \(\rho = m/V \), \[\alpha = - \left(\frac{\partial \ln \rho}{\partial T} \right)_P \]

2. Integration \(\Rightarrow \) \[V = V_r \exp[\alpha(T-T_r)] \] where \(\alpha \) is assumed to be independent of \(T \) near some reference \(T = T_r \).

3. More general: If \(f(T,T_r) \) is a function that \(= 0 \) when \(T = T_r \), \(\alpha \) is expressed \(\Rightarrow \) \[V = V_r \exp[f(T,T_r)] \]
\[\alpha = df/dT \]
C. Experiment

1. Known is “standard mean ocean water.” Its density is a function of T, so calibration requires measuring m and T.

2. Both this and the unknown (an alcohol) must be degassed beforehand to prevent air bubble formation.

3. Thermal equilibrium is *not* achieved instantly!

4. Data obtained in range 10-40°C; suffices to determine whether α is T-dependent over this range.

5. Etched scales on both devices are in cm and mm.

6. Minor complications:
 Buoyancy correction in pycnometry masses.
 Thermal expansivity of Pyrex not negligible.

7. Modified instructions:
 (1) Do dilatometry for just three T ranges: $\sim 15, 25, 35^\circ\text{C}$
 (2) Get density (pycnometry) for at least 4 Ts in this range.