Thermal Expansivity

A. Underpinning Purposes

- 1. Experience in using a *known* substance to calibrate a device, for subsequent application to an *unknown* substance.
- 2. Acquaintance with two simple devices the *pycnometer* and the *dilatometer* capable of giving very precise results for a fundamental physical property of liquid substances.
- **B.** Theory

1.
$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = \left(\frac{\partial \ln V}{\partial T} \right)_P$$
 and, since $\rho = m/V$, $\alpha = -\left(\frac{\partial \ln \rho}{\partial T} \right)_P$

- 2. Integration $\Rightarrow V = V_r \exp[\alpha(T T_r)]$ where α is assumed to be independent of *T* near some reference $T = T_r$.
- 3. More general: If $f(T,T_r)$ is a function that = 0 when $T = T_r$, where $V = V_r$, then if V is expressed $V = V_r \exp[f(T,T_r)]$

 $\alpha = df/dT$

C. Experiment

- 1. Known is "standard mean ocean water." Its density is a function of T, so calibration requires measuring m and T.
- 2. Both this and the unknown (an alcohol) must be degassed beforehand to prevent air bubble formation.
- 3. Thermal equilibrium is *not* achieved instantly!
- 4. Data obtained in range 10-40°C; suffices to determine whether α is *T*-dependent over this range.
- 5. Etched scales on both devices are in cm and mm.
- 6. Minor complications:Buoyancy correction in pycnometry masses. Thermal expansivity of Pyrex not negligible.
- 7. Modified instructions:
 - (1) Do dilatometry for just three *T* ranges: $\sim 15, 25, 35^{\circ}$ C
 - (2) Get density (pycnometry) for at least 4 Ts in this range.