Freezing-Point Depression

A. Simple Picture for Strong Electrolytes

- 1. *Colligative Property*: depends only on *amount* of solute, not its nature. Does depend on *solvent*.
- 2. Equation: $\Delta T_f = -k_f m_B v \quad [m_B \text{ is solute molality}, k_f = 1.860 \text{ K kg/mol for water}; v = ?]$
- 3. *Example*: $CaCl_2(s) \rightarrow Ca^{2+}(aq) + 2 Cl^{-}(aq)$ v = 3 valid because CaCl₂ is strong electrolyte, fully

ionized in solution.

B. Exact Treatment

$$\ln a_{\rm A} = \frac{\Delta H_{\rm m, fus}}{R} \frac{\Delta T_f}{T_f^* T_f} \approx \frac{\Delta H_{\rm m, fus} \Delta T_f}{R T_f^{*2}}$$

 $a_A = activity$; all quantities refer to solvent properties.

- (activity coef. × mole fraction) 1. $a_A = \gamma_A x_A$
- 2. $x_{\rm A} = n_{\rm A}/(n_{\rm A} + v n_{\rm B})$ (defines solvent mole fraction)
- 3. a_A and γ_A describe deviation of actual system from predictions of simple equation (for which $\gamma_A = 1$). Thus, measurement of ΔT_f permits calculation of γ_A .
- C. Alternative (but Equivalent) Approach

 $\phi = \frac{-\ln a_{\rm A}}{M_{\rm A} \ v \ m_{\rm B}} \quad \text{defines } practical \ osmotic \ coefficient \ \phi. \ M_{\rm A}$ is molar mass of solvent A (kg/mol).

 $\Delta T_f = -k_f (v \phi) m_B$ exact version of 1st equation; ϕ plays role of fudge factor needed to achieve agreement. Product $v\phi$ known as *van't Hoff i factor*. Also, have $k_f = \frac{R \ T_f^{*2} \ M_A}{\Lambda H_{\rm m \ fus}}$

D. Experiment. For HCl, measure
$$\Delta T_f$$
 with thermistor, m_B by titration; calculate ϕ , a_A , x_A , and γ_A .

E. Weak Electrolytes

- 1. *Example*: $HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$ (weak acid)
- 2. Let m = starting molality of HA and α = fractional ionization. Then at equilibrium $m_{\text{HA}} = m (1 - \alpha)$, and

 $m(1-\alpha) + m\alpha + m\alpha = m(1+\alpha) \equiv m'$

$$K_m = \frac{m \ \alpha^2}{(1-\alpha)} = \frac{(m'-m)^2}{2m-m'}$$

3. Approach: Get m' from ΔT_f using simple eqn., m from titration. Calculate K_m . Extrapolate to zero ionic strength to get "true" K,

 $\ln K_m = \ln K_a^\circ - 2 \ln \gamma_{\pm}$

 $\ln K_m = \ln K_a^{\circ} + 2.26 (\alpha m)^{1/2}$

F. Mustering the Data

	3 #	4 T-t'ste	5 t-coner	6 m-samp	7 v-tit	8 nB	9 mass-B	10 mass-A
0	1	-0.83500	-0.82813	9.873	28.73	0.0022679	0.082692	0.0097903
1	2	-0.68300	-0.67443	10.010	23.97	0.0018922	0.068991	0.0099410
2	3	-0.51200	-0.50153	9.986	17.92	0.0014146	0.051578	0.0099344
3	4	-0.35000	-0.33772	9.989	12.20	0.00096307	0.035114	0.0099539
4	5	-0.24000	-0.22650	10.010	8.22	0.00064889	0.023659	0.0099863
5	6	-0.16400	-0.14965	10.009	5.57	0.00043970	0.016032	0.0099930
6	7	-0.12400	-0.10920	9.972	4.03	0.00031813	0.011599	0.0099604
7		-0.016000	-1.2215e-06					
0								

	11 n-H20	12 mHCl	13 phi	14 LinaA	15 aA	16 ×A	17 gA	18 mB^.5
0	0.54345	0.23165	0.96099	-0.0080208	0.99201	0.99172	1.00029	0.48130
1	0.55182	0.19034	0.95249	-0.0065322	0.99349	0.99319	1.00030	0.43628
2	0.55145	0.14239	0.94680	-0.0048575	0.99515	0.99490	1.00026	0.37735
З	0.55253	0.096753	0.93832	-0.0032710	0.99673	0.99653	1.00021	0.31105
4	0.55433	0.064977	0.93704	-0.0021937	0.99781	0.99766	1.00014	0.25491
5	0.55470	0.044001	0.91427	-0.0014494	0.99855	0.99842	1.00013	0.20976
6	0.55289	0.031939	0.91912	-0.0010577	0.99894	0.99885	1.00009	0.17872
7								