Spectrophotometric Study of Equilibrium A. Reaction

1. $M + I_2 \Leftrightarrow M \bullet I_2$ (charge-transfer complexation)

2. Equilibrium:
$$K = \frac{[M \bullet I_2]}{[M] [I_2]} = \frac{x}{([M]_0 - x)([I_2]_0 - x)}$$

3. *Conditions*: $K \approx 1 \text{ M}^{-1}$, so all species present at equilibrium. (Note that $K[M] = [M \cdot I_2]/[I_2]$, so I_2 is 50:50 complexed when l.h.s. = 1.)

B. Spectrophotometry

- 1. $I/I_0 = 10^{-A} \equiv transmittance;$ A (absorbance) = $\varepsilon \ c \ \ell$ (molar absorptivity × concentration × path length)
- 2. Additivity: $A = A_M + A_{I_2} + A_x + A_{solv}$
- 3. Choose λ where only A_x significant: $A \approx A_x = \varepsilon_x x \ell$

4. Analysis: Use
$$[M]_0 \gg [I_2]_0$$
, so $[M] \approx [M]_0$
 $\Rightarrow \quad \frac{[I_2]_0 \ell}{A_x} = \frac{1}{\varepsilon_x K[M]_0} + \frac{1}{\varepsilon_x} \qquad [y = bx + a, i.e.,$

straight line with intercept ε_x^{-1} and slope $(\varepsilon_x K)^{-1}$; define fit parameters as ε_x and $K \Rightarrow$ get uncertainties directly.]

C. Thermodynamics

- 1. $\Delta G^{\circ} = -RT \ln K^{\circ}$ [conventional Gibbs energy change] 2. van't Hoff: $\frac{\partial \ln K^{\circ}}{\partial (1/T)} = \frac{-\Delta H^{\circ}}{R} \Rightarrow \ln(K_2/K_1) = (\Delta H^{\circ}/R)(1/T_1 - 1/T_2)$ [NOTE: This is our third encounter with this relation.]
- 3. $\Delta G^{\circ} = \Delta H^{\circ} T \Delta S^{\circ}$ [The previous equation assumes that ΔH° and ΔS° are independent of *T*; with that assumption this equation yields identical ΔH° (hence ΔS°) from *K* at two *T*s.]

In all such thermodynamic applications, *T* is in K.

D. Spectral Results

